简介:极端值亦称离群值或边远值,即在观测值中远远偏离数据主体部分的个别值,这些值不能服从假定的概率分布。如果将极端值和其它数据不加区别地等同对待,会使数据的离散程度加大,计算出的数字特征不能反映主体数据的特征。对极端值进行识别并加以处理,是探索性数据分析的一个重要问题。经过适当处理后的数据,具有较强的耐抗性,即对局部数据的不良行为具有不敏感性。在统计分析中,识别极端值的方法有以下几种:(一)四分展布法四分展布法是一种经验法,首先计算中位数和四分位数:设有数据X1,X2…Xn,将其从小到大排列,记为X(t),X(2)…X(n);当n为奇数时,n=2k+1,中位数=X(k),中位数位次为k+1;当n为偶
简介:本文研究部分变系数动态模型,一些参数的值可以成为协变量的函数,并提出了参数和非参数函数系数的估计。本文提出一个基于支持向量机分位数回归的部分变系数动态模型,及它的三步估计法和迭代加权最小二乘法估计模型的参数和非参数函数,提出的方法能被简单有效地应用到线性和非线性分位数回归光滑变量的高维情况。同时,本文也提出模型的惩罚参数、核参数的选择方法——交叉验证方法。