简介:空调与制冷系统对平流层臭氧的影响主要是与损耗臭氧层的冷媒泄漏联系在一起。它们对全球气候变暖的作用既由于冷媒的泄漏,又由于用能所带来的温室气体排放。因为与耗能有关的组成部分具有较高的或主要的变暧影响,所以用效率欠高的方案逐步淘汰氢氟烃(HFC)冷媒将会增加净温室气体的排放。此结论同样也适用于全氟烃(PFCs),虽然它们作为冷媒一般用得较少。在缺乏理想冷媒情况下,即缺乏没有如安全,稳定性,相容性,价格,及类似麻烦问题的冷媒情况下,臭氧损耗,全球变暧及大气寿命期的综合评价提供了筛选冷媒的基本指标。本文考察了在制冷机使用期间冷媒损失的演变趋势。它既证实了在泄漏量减少上有了重大进步,又提供了为达到泄漏量减少的一些技术革新资料。本文对比了目前所用的替代冷媒与它们所替代的氯氟烃(CFCs)的影响。本文还对各种方案的热力学与环境影响作了总结归纳,证明仅仅根据化学成分,而不考虑各种物质的一些特性来作出逐步淘汰决定,所造成的环境损害可能要大于它的好处。
简介:不饱和聚酯(UP)树脂是一种重要的热固性树脂。在成型加工过程中,不饱和聚酯树脂常作为复合材料的一种基体树脂来使用。然而,不饱和聚酯树脂也存在一些缺陷:如耐碱性差;在低聚物不饱和聚酯树脂与苯乙烯单体进行交联反应的过程中发生体积收缩、性脆。不饱和聚酯树脂的机械性能可以通过将其与不同的材料进行嵌段来得以提高。在研究中,使用聚氨酯(PU)作为改性剂来提高UP树脂的韧性,并讨论了作为PU软段的聚醚多元醇分子质量及PU含量对PU改性UP树脂韧性的影响。通过甲基二异氰酸酯(MDI)上的异氰酸酯基和UP分子上的羟基反应生成了一种UP/PU聚合物网络,发现当PU质量分数大约为2%时,其韧性达到最大值。以上结果可以通过弹性PU链段嵌入脆性UP树脂这一现象来加以解释。
简介:以进行化学回收为目的,将3种环氧树脂在80℃的4mol/dm^3及6mol/dm^3浓度的硝酸水溶液中分解。以DDM(二氨基二苯基甲烷)固化的双酚F型环氧树用4mol/dm^3浓度的硝酸分解需要400h,用6mol/dm^3的硝酸分解需要80h。DDS(二氨基二苯酮)固化的TGDDM(四缩水甘油二氨基二苯基甲烷)型环氧树脂,以4mol/dm^3浓度的硝酸水溶液分解约需50h,以6mol/dm^3硝酸分解约需15h。由醋酸乙酯萃取硝酸水溶液所得化合物的分析结果表明水解是由于C-N键断裂及硝化所引起。就通常耐酸性较好的酸酐固化环氧树脂而言,如树脂主剂的化学结构中具有C-N键,以甲基纳迪克酸酐固化的TGDDM型环氧树脂以硝酸水溶液分解,用4mol/dm^3硝酸分解约需80h,以6mol/dm^3浓度分解约250h,表明以此方法分解酸酐固化环氧树脂是可行的。由分解生成物的分析结果可以判断,将回收的分解生成物再聚合为目的的话,双酚F型环氧树脂以4mol/dm^3硝酸水溶液分解为优;仅仅是单纯地进行废物处理的话,DDS固化的TGDDM型环氧树脂以6mol/dm^3硝酸水溶液进行分解最适宜。