简介:作为一个保边去噪的算法,各向异性扩散滤波(anisotropicdiffusionfilter,ADF)被广泛应用于磁共振成像(magneticresonanceimage,MRI)图像的预处理中,且对MRI图像中的莱斯噪声具有很好的去除效果.各向异性扩散滤波参数的选择对于其去噪性能影响很大,为找出滤波器的最佳参数,我们用改进的遗传算法对其进行参数优化,并且采用了一种新的精英选择策略,而且还在交叉和变异过程中采用了自适应的交叉和变异概率,再分别对各向异性扩散滤波的迭代次数t、扩散阈值k以及时间步长λ等三个参数进行选择优化.最后,从峰值信噪比(peaksignal-to-noiseratio,PSNR)、结构相似性指数(structuralsimilarityindexmetric,SSIM)、均方差(meansquarederror,MSE)三个方面,将经过参数优化的各向异性扩散滤波器对脑部MRI进行去噪处理,并与其它参数下的滤波结果进行对比.实验结果表明,经过参数优化的各向异性滤波器,无论是从视觉上还是相关评价指标上,均优于其它参数情况下的去噪效果.
简介:摘要:随着大数据时代的到来和计算机能力的提升,传统的目标检测方法难以处理庞大的图像数据以及无法满足人们对目标检测精度和速度上的要求,而卷积神经网络具有强大的特征学习能力,突破了传统目标检测方法的瓶颈,基于卷积神经网络的图像目标检测技术在诸多领域掀起了新的应用热潮。首先,文中介绍了卷积神经网络在目标检测任务上的优越性;其次,梳理了基于卷积神经网络的图像目标检测在医学、工业、农业领域中的典型应用,并对其中几种典型卷积神经网络的结构进行归纳总结分析;最后,讨论了目标检测的应用方面仍然存在的问题,并对基于卷积神经网络的图像目标检测应用的未来研究发展方向进行展望。
简介:扫描电镜能直观观察样品的表面结构,但其高分辨形貌成像图固有的噪声不利于图像分析。针对集成电路器件扫描电镜成像图的去噪声问题,采用了通过滑动条方式自适应设置图像二值化阈值,将数学形态学处理方法与图像二值化相结合,实现了对图像噪声的自动去除处理;同时还设计了通过手动勾勒图像中的多边形区域实现去除噪声的功能;为使图像达到更好的效果,系统还可允许针对自动去噪后的图像自行选择是否进行手动去噪,并设计实现了风格直观简洁,易于操作的交互式用户界面。对多幅集成电路器件扫描电镜成像图进行去噪声处理的结果和对去噪前后的图像进行无参考图像质量评价的数据表明,该方法有效地改善了扫描电镜图的信噪比,获得了突出前景等有用信息。