简介:苏(1,1)动态对称具有在在理论、适用的物理分析无界的量系统的基本重要性。在这份报纸,我们学习与苏一起与量系统联系的概括协调状态的控制(1,1)动态对称。在苏上基于一个假Riemannian度量标准(1,1)组,我们为最小化驾驶系统到需要的最后的状态的控制的领域fluence获得必要条件。进一步的分析证明候选人最佳的控制答案能被分类进正常、反常的extremals。当控制Hamiltonian是非寓言的时,反常extremals能仅仅是经常的函数,当正常extremals能被Weierstrass椭圆形的函数根据控制Hamiltonian的parabolicity表示时。作为一种特殊情况,最大地挤压一个概括协调状态的最佳的控制解决方案是一个正弦曲线领域,它与在实验室被使用的一致。
简介:以两对边简支另两对边自由的功能梯度材料板为研究对象,首先建立了考虑材料物性参数与温度相关的、在热/机械载荷共同作用下的几何非线性动力学方程,采用渐进摄动法对系统在1:1内共振-主参数共振-1/2亚谐共振情况下的非线性动力学行为进行了摄动分析,得到系统的四自由度平均方程,并对平均方程进行数值计算,分析外激励对系统非线性动力学行为的影响,发现在一定条件下通过改变外激励可以改变系统的运动形式,产生混沌运动.另外,第二阶模态的幅值远比第一阶模态的幅值大,这应该是两阶模态耦合产生内共振的结果,因此,研究该类结构的非线性动力学行为时不应该只考虑一阶模态,而应考虑到前两阶甚至更多阶模态的相互作用,以便于更好地利用或控制其运动形式.
简介:线弹性静力学中有最小势能原理和最小余能原理,但只适用于物体或结构在给定约束条件下处于稳定平衡状态的情况,而在一般情况下动力学问题不可能存在稳定平衡状态,因此在动力学领域中是否存在最小势能原理值得认真考虑.本文对动力学问题中存在最小势能原理的可能性进行了探讨,并以摆脱了"平衡态"和"稳定态"的限制的最小功耗原理为理论基础,导出了线弹性动力学中的最小势能原理和最小余能原理.给出了计算实例,结果正确.因此在线弹性动力学中存在瞬时意义下的最小势能原理和最小余能原理.但其含义与静力学中的最小势能原理和最小余能原理并不相同.其主要区别在于:动力学中的原理适用于不稳定过程之任一瞬时,其"最小"是指"当时(即该瞬时)所有可能值的最小".而静力学中的最小势能原理则只适用于稳定平衡状态,其"最小"是指系统从不稳定最后达到稳定平衡的整个过程中所有"真实值中的最小".即前者是"当时的最小",后者则是"全过程中的最小".这两类变分原理可成为线弹性动力学中各种变分直接解法的理论基础.
简介:这份报纸与滑动模式控制进L1的集成论述一个适应控制计划适应控制建筑学,它提供好追踪表演以及坚韧性againstmatched无常。Slidingmode控制在L1被用作一条适应法律适应控制建筑学,它被看作在估计的状态和真实状态之间的错误动力学的虚拟控制。当维持控制精确性时,在控制法律设计的低通行证的过滤机制在适应法律阻止一个不连续的信号出现在实际控制信号。由把滑动模式控制用作错误动力学的虚拟控制并且介绍低通行证的过滤控制信号,啁啾的效果被消除。在靠近环的适应系统和靠近环的参考书系统之间的性能界限在这份报纸被描绘。数字模拟被提供表明介绍适应控制计划的表演。
简介:运用Bell多项式定理研究了一个(2+1)维AKNS方程的可积性,得到双线性方程、Backlund变换以及运用Backlund变换求得其孤子解,最后运用Bell多项式得出Lax对.
简介:基于一个特殊的Painleve-Backlund变换和多线性变量分离方法,分析了(2+1)维非线性广义Borer-Kaup(GBK)系统,求得了该系统具有若干任意函数的变量分离严格解.根据得到的变量分离严格解,并通过选择解中的任意函数,引入恰当的局域函数和多值函数,找到了GBK系统一种新的具有实际物理意义的半包局域相干结构,如海洋表面波,并简要地讨论了这种半包局域相干结构的一些特殊的演化性质.结果表明:这种半包局域相干结构相互作用后,完全保持它们原有的速度、波形和波幅,即它们的演化性质是完全弹性的.