简介:以元谋县干热河谷为调查对象,对99条冲沟进行了样方调查,利用SPSS和Excel软件分析冲沟各指标间及其与植被盖度的关系。研究结果表明:(1)无论从总体还是局部来看,沟长和沟宽均呈现极显著的正相关关系,总体、沙地村、金雷村和苴林村的相关系数分别为0.591、0.551、0.548和0.579;沟深与沟底坡度也呈现出极显著的正相关关系,相关系数分别为0.566、0.633、0.448和0.758;其他指标均呈现总体与局部不一致的现象;(2)在沟长小于60m的范围内,沟宽有随着沟长的增加而增加的趋势;在沟底坡度0~80°的范围内,沟深有随着沟底坡度的增大而增加的趋势;(3)海拔和沟底坡度与植被盖度的相关系数分别为0.481、-0.526,相关性显著,植被盖度大的地方都出现在海拔高或者沟底坡度低的地方。本研究将为该区的植被恢复模式选择提供一定的理论支撑,为区域水土流失治理措施提供科学依据。
简介:在对2000-2012年粮食产量数据与耕地面积数据进行动态分析的基础上,引入敏感度分析模型,对2000年以来云南粮食生产与耕地变化的动态关系进行定量评估,从而揭示粮食产量对耕地变化的敏感性特征。研究表明,2000-2003年粮食产量对耕地变化的敏感程度小于0,为不敏感状态;2004-2005年粮食产量对耕地变化的敏感程度为0.11,为低度敏感状态;2006-2012年粮食产量对耕地变化的敏感程度迅速增大到35.68,为高度敏感状态,说明2006年以来粮食产量对耕地变化的敏感度很高,耕地面积的较小变动会造成粮食产量的较大波动。因此,严格区域耕地保护,实行耕地“补占平衡”政策对于保证区域粮食安全具有重要意义。
简介:黄河中游水利水土保持措施减沙关系黄河治理战略全局,对其进行回顾和展望,可为目前开展的黄河综合规划修编提供重要参考。结果表明:1960-1984年,平均每年拦蓄泥沙约5亿t,其中干流水库1.0亿t(19.6%)、支流水库1.2亿t(23.5%)、灌溉引沙0.6亿t(11.8%)、淤地坝拦沙2.0亿t(39.16%)、梯田拦沙0.3亿t(5.9%);到20世纪80和90年代,这种减沙构成略有变化,总体来看,水利措施减沙比例变化不大,而水土保持措施拦沙比例有所减小;70-90年代,黄河中游年均减沙3亿t左右,目前,水利水土保持措施现状减沙约3.5亿~4.5亿t。展望水利水土保持措施减沙作用后认为:近年来,黄土高原水土流失地区暴雨强度较小,实测来沙量资料不能作为黄河综合规划修编中水土保持现状减沙效果计算的主要依据;由于未来黄河中游来沙量变化取决于多种因素的组合,因此,对未来水利水土保持措施减沙作用应持慎重和偏于安全的态度,并作为今后长期认真研究的问题。
简介:耕作位移和耕作侵蚀主要是在重力作用下,由耕作工具触发的土壤侵蚀;是造成坡耕地土壤重新分布和坡耕地土壤侵蚀的重要过程之一;对坡面地形演化、土壤性质改变、土壤养分流失与重新分布、土地生产力降低、土壤碳储存变化等都有重要影响。在以往研究的基础上,总结耕作侵蚀的基本过程和机制、研究方法、影响因素和侵蚀速率的研究进展,讨论目前研究中的不足与未来可能的研究方向。不同于风蚀和水蚀,耕作侵蚀发生的动力条件是人为影响,而非自然发生的降水或风力;因而,其侵蚀过程和机制、研究方法、影响因素、侵蚀速率分布等均不同于风蚀和水蚀。耕作侵蚀主要受人为和自然因素的影响,人为因素驱动耕作侵蚀发生,坡面是耕作侵蚀的地形基础。人为因素主要有耕作工具特性、耕作方向、速度和深度等;自然因素主要包括坡面的形状和尺寸、地形、坡度和土壤性质等。强烈的耕作侵蚀主要发生在坡面上部和坡面曲率剧烈变化的部位。耕作侵蚀研究主要通过基于示踪技术的实测方法,结合模型预测开展。由于耕作侵蚀、风蚀和水蚀的研究方法各成体系,通用方法较少,因而,多营力侵蚀研究难度巨大。以^137Cs为代表的核素在研究水蚀、风蚀和耕作侵蚀中均表现出独特的优势,为区分多营力侵蚀中各种侵蚀的速率和贡献提供了新的可能。
简介:降雨形成的径流是产生坡面土壤侵蚀的主要动力来源,径流流速是土壤侵蚀模型的重要参数之一。为研究电解质示踪法测量坡面水流流速过程中电解质优势流速和水流流速的关系,本研究利用实验水槽,在坡度4°、8°、12°,流量12、24、48L/min条件下,于距离电解质注入位置0.3、0.6、0.9、1.2、1.5m处放置探针测量电解质传递过程,计算不同工况下各测量断面的电解质优势流速。结果表明:流量对电解质优势流速的影响大于坡度对其影响,电解质优势流速随距离增加而增大,采用指数函数拟合计算得到的电解质优势流速随距离的变化过程,得到稳定的电解质优势流速,即水流优势流速,其范围在0.241~0.568m/s之间。随坡度和流量的增大,水流优势流速均增大。流量对水流优势流速增长的影响大于坡度对其的影响。不同坡度和流量条件下,水流优势流速与平均流速基本一致,二者的比值为1.007,水流优势流速与最大流速的比值为0.774,平均流速与最大流速的比值为0.776,符合坡面薄层水流的流态。结果可为研究坡面薄层水流动力过程提供新的计算方法和参考数据。