学科分类
/ 3
42 个结果
  • 简介:<正>湖南化工研究院创建于1951年,主要从事农药、精细化工、无机功能材料等领域新技术、新产品研究和工程技术开发,是国家农药创制工程技术研究中心依托单位。下设5个专业研究所和4个技术服务中心,现有科研人员160余人,其中高级职称58人、中级职称66人,博士6人、硕士19人。拥有国家氨基甲酸酯类农药工业试验基地、湖南省农用化学品重点实验室、湖南省化肥农药质量监督检验授权站、湖

  • 标签: 农药创制 湖南化工研究院 研究中心 化肥农药 农用化学品 技术服务中心
  • 简介:摘要:目前,针对肉牛消化不良治疗方法多种多样。这些方法不同程度上可以缓解肉牛消化不良症状,提高肉牛消化能力和食欲。然而,由于肉牛消化不良成因复杂多样,单一治疗方法往往难以取得理想效果。因此,本文旨在综合分析和评价各种治疗措施效果,为肉牛消化不良治疗提供更为全面和有效指导。

  • 标签: 肉牛 消化不良 治疗措施
  • 简介:<正>各省、自治区、直辖市及计划单列市、新疆生产建设兵团农业(农林、农牧、农牧渔业)厅(局)、化工厅(局)、供销合作社:除草醚是稻田除草剂,我国从60年代开始生产、使用,到80年代成为使用量最大除草剂品种,对防除我国稻田杂草发挥过积极作用。但是,据国外权威机构研究表明,除草醚对试验动物具有致畸、致突变、致癌作用,多数国家已禁止生产、使用。近几年,我

  • 标签: 积极作用 通知 自治区 除草醚 稻田杂草 新疆生产建设兵团
  • 简介:[目的/意义]针对现有规模化猪场生猪计数需求场景多,人工计数效率低、成本高等问题,提出一种基于改进实例分割深度学习算法和微信公众平台区域养殖生猪计数方法.[方法]首先,利用智能手机拍摄养殖场猪只视频,对视频抽帧进一步生成图像数据集.其次,通过改进卷积块注意力模块(Convolutional Block Attention Module,CBAM)忽略通道与空间相互作用及通道注意力降维操作带来效率较低问题,提出高效全局注意力模块,并将该模块引入基于回归分析单阶段实例分割网络YOLO(You Only Look Once)v8对获取生猪图像进行分割,构建新识别模型YOLOv8x-Ours,以实现高精度生猪计数.最后,基于微信公众平台开发微信小程序,并嵌入综合表现最优生猪计数模型,实现使用智能手机拍摄图像进行生猪快速计数.[结果和讨论]测试集上试验结果表明,与现有实例分割模型..

  • 标签: 生猪计数深度学习微信小程序YOLOv8实例分割
  • 简介:[目的/意义]针对传统大米品质监管追溯系统存在品控数据链机制不够完善、品控信息可追溯程度不足、数据上链效率低及隐私信息泄露等问题,提出一种差分隐私增强大米区块链品控模型.[方法]首先,结合大米全产业链,设计数据传输流程,涵盖种植、收购、加工、仓储和销售等各环节,有效保证品控数据链连续;其次,为解决上链数据量大、上链效率低问题,将大米全产业链各环节关键品控数据存储于星际文件系统(InterPlanetary File System,IPFS),然后将存储完成后返回哈希值上链;最后,为提高品控模型信息可追溯程度,将种植环节关键品控数据涉及隐私部分信息通过差分隐私(Differential Privacy)处理后展示给用户,模糊化个体数据,以提高品控信息可信度,同时也保护了农户种植隐私.基于该品控模型,设计了差分隐私增强大米区块链品控系统,并在相关大米企业实际运行.[结..

  • 标签: 星际文件系统区块链品控高效上链差分隐私增强信息追溯
  • 简介:<正>为加强农药管理,逐步削减高毒农药使用,保护人民生命安全和健康,增强我国农产品市场竞争力,经全国农药登记评审委员会审议,我部决定撤销甲胺磷等5种高毒农药混配制剂登记,撤销丁酰肼花生上登记,强化杀鼠剂管理。现将有关事项公告如下:一、撤销甲胺磷等5种高毒有机磷农药混配制剂登记。自2003年12月31日起,撤销所有含甲胺磷、对硫磷、甲基对硫磷、久效磷和磷胺5种高毒有机磷农药混配制剂登记(具体名单由农业部农药检定所公布)。自公告之日起,不再批准含以上5种高毒有机磷农药混配制剂和临时登记有效期超过4年单剂续展登记。自2004年6月30日起,不得市场上销售含以上5种高毒有机磷农药混配制剂。二、撤销丁酰肼花生上登记。自公告之日起,撤销丁酰肼(比久)花生上登记,不得花生上使用含丁酰肼(比久)农药产品。相关农药生产企业2003年6月1日前到农业部农药检定所换取农药临时登记证。三、自2003年6月1日起,停止批准杀鼠剂分装登记,已批准杀鼠剂分装登记不再批准续展登记。

  • 标签: 产品登记 高毒有机磷 分装登记 续展登记 农药检定所 农药生产企业
  • 简介:摘要 : 溶解氧含量测量对水产养殖具有极其重要意义,但目前中国市面上溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差关系进行低成本、易维护溶解氧传感器研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以 STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换( FFT)计算激发光与参照光相位差,进而转化为溶解氧浓度,实现溶解氧测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感器测量范围是 0~20 mg/L,响应延迟小于 2 s,溶氧敏感膜使用寿命约 1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器研发与市场化奠定了良好基础。

  • 标签: 溶解氧传感器 荧光淬灭 水产养殖 STM32微处理器 溶氧敏感膜
  • 简介:摘要 : 准确获取西兰花花球面积和新鲜度是确定其长势关键步骤,本研究通过对深度残差网络 ResNet进行改进得到一种新型西兰花花球分割模型,并通过花球部位黄绿颜色占比判断其新鲜度,实现低成本高效准确地西兰花表型信息提取。主要技术流程包括:( 1)基于地面自动影像获取平台拍摄西兰花花球正射影像并建立原始数据集;( 2)对训练图像进行预处理并输入模型进行分割;( 3)基于颜色信息用粒子群结构 PSO和大津法 Otsu对分割结果进一步进行阈值分割,获取其新鲜度指标。试验结果表明:本研究建立分割模型精度优于传统深度学习模型和基于颜色空间变换和阈值分割模型, 4个评价指标结构相似指数 (SSIM)、平均精度 (Precision)、平均召回率 (Recall)、 F-度量 (F-measure)结果分别为 0.911、 0.897、 0.908和 0.907,相比于传统方法提升了 10%-15%,且对土壤反射率波动、冠层阴影、辐射强度变化等干扰具有一定鲁棒。同时,分割结果基础上采用 PSO-Otsu法可以实现花球新鲜度快速分析,其精度超过了 0.8。本研究结果实现了西兰花田间多表型参数高通量获取,可以为作物田间长势监测研究提供重要参考。

  • 标签: 深度学习 西兰花表型 机器视觉 自动分级 田间平台
  • 简介:摘要 : 土壤养分作为农业生产重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析传统方法能够全面准确地检测土壤养分,但检测过程中土壤取样及预处理过程繁琐、操作复杂、费时费力,不能实现土壤养分原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光干扰。该方法使用波长范围 1260~1610 nm 8通道窄带激光二极管作为近红外光源,通过测量 8通道激光光束土壤反射率,建立土壤养分氮( N)关于土壤反射率计量模型,实现了 N快速检测。 74组已知 N含量土壤样品,选取 54组作为训练集, 20组作为预测集。基于一般线性模型,对训练集中土壤 N含量与土壤反射率定量化参数进行训练,筛选显著波段后计量模型 R2达到 0.97。基于建立计量模型,预测集中土壤 N含量预测值与参考值决定系数 R2达到 0.9,结果表明该方法具有土壤养分现场快速检测能力。

  • 标签: 土壤氮素 近红外光谱 近场遥测 锁相放大 光电探测
  • 简介:摘要 : 光是植物进行光合作用主要能量来源,光照好坏直接影响作物产量和品质。本研究针对现有植物补光系统多以功能叶光合能力为基准进行冠层补光,导致冠层新生叶光抑制、株间功能叶位补光不足以及补光位置不能适应作物生长进行动态调整问题,以黄瓜为研究对象,设计了一种基于植株需光差异特性设施黄瓜立体光环境智能调控系统。该系统由智能控制子系统、冠层 -株间 LED补光子系统、冠层 -株间环境监测子系统和补光灯升降子系统组成,通过 ZigBee技术实现各子系统间无线通信。其中冠层 -株间环境监测子系统分别获取冠层和株间环境信息并发送至智能控制子系统,智能控制子系统根据环境实时信息调用冠层调控模型和株间适宜叶位调控模型获得相应调控目标值,并将其下发至冠层 -株间补光灯,实现冠层与株间补光灯动态实时调控。陕西省泾阳县蔬菜产业综合服务区蔬菜基地分别部署立体补光设备和传统冠层补光设备,并进行系统调控效果验证试验。结果表明,立体补光区黄瓜植株株高和茎粗显著增长,其中相比传统冠层补光区平均株高、茎粗分别增长了 8.03%和 7.24%,相比自然处理区平均株高、茎粗分别增长了 26.51%和 36.03%;一个月采摘期内,立体补光区相比传统冠层补光区和自然处理区产量分别提升了 0.28和 1.39 kg/m2,经济效益分别增加了 2.82和 4.88 CNY/m2,说明立体光环境调控系统能够提高经济效益,具有应用推广价值。

  • 标签: 设施光环境 ZigBee 黄瓜叶位 立体补光 智能调控 PWM
  • 简介:摘要 : 为提高现有苹果目标检测模型硬件资源受限制条件下性能和适应,实现在保持较高检测精度同时,减轻模型计算量,降低检测耗时,减少模型计算和存储资源占用目的,本研究通过改进轻量级 MobileNetV3网络,结合关键点预测目标检测网络( CenterNet),构建了用于苹果检测轻量级无锚点深度学习网络模型( M-CenterNet),并通过与 CenterNet和单次多重检测器( Single Shot Multibox Detector, SSD)网络比较了模型检测精度、模型容量和运行速度等方面的综合性能。对模型测试结果表明,本研究模型平均精度、误检率和漏检率分别为 88.9%、 10.9%和 5.8%;模型体积和帧率分别为 14.2MB和 8.1fps;不同光照方向、不同远近距离、不同受遮挡程度和不同果实数量等条件下有较好果实检测效果和适应能力。检测精度相当情况下,所提网络模型体积仅为 CenterNet网络 1/4;相比于 SSD网络,所提网络模型 AP提升了 3.9%,模型体积降低了 84.3%;本网络模型 CPU环境运行速度比 CenterNet和 SSD网络提高了近 1倍。研究结果可为非结构环境下果园作业平台轻量化果实目标检测模型研究提供新思路。

  • 标签: 机器视觉 深度学习 轻量级网络 无锚点 苹果检测
  • 简介:摘要 : 水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合 PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数构造方法和形式,利用相关分析、连续投影法、遗传算法优化粗糙集属性简约法进行高光谱特征选择,提出了仅含有 695、 507和 465nm 3个高光谱特征波段红边优化指数( ORVI)。与 Index Data Base数据库其他用于叶绿素含量反演植被指数,包括 ND528,587、 SR440,690、 CARI、 MCARI反演结果进行了对比分析,结果表明: IDB数据库已有 4种植被指数叶绿素含量反演模型决定系数 R2分别为 0.672、 0.630、 0.595和 0.574; ORVI植被所建立叶绿素含量反演模型决定系数 R2为 0.726,均方根误差 RMSE为 2.68,精度高于其他植被指数,说明了 ORVI实际应用,能够作为快速反演水稻叶绿素含量高光谱植被指数。本研究能够为寒地水稻叶绿素含量高光谱遥感诊断及管理决策提供一定客观数据支撑和模型参考。

  • 标签: 植被指数 叶绿素反演 水稻叶片 高光谱遥感 红边优化指数 ORVI
  • 简介:[目的/意义]随着奶牛养殖业向规模化、精准化和信息化养殖迅速发展,对奶牛健康监测和管理需求也日益增加.实时监测奶牛反刍行为对于第一时间获取奶牛健康相关信息以及预测奶牛疾病具有至关重要意义.目前,针对奶牛反刍行为监测已经提出了多种策略,包括基于视频监控、声音识别、传感器监测等方法,但是这些方法普遍存在实时不足问题.为了减轻数据传输数量与云端计算量,实现对奶牛反刍行为实时监测,基于边缘计算思想提出了一种实时对奶牛反刍行为进行监测方法.[方法]使用自主设计边缘设备实时地采集并处理奶牛六轴加速度信号,基于六轴数据提出了基于联邦式与拆分式边缘智能这两种不同策略对奶牛反刍行为实时识别方法展开研究.基于联邦式边缘智能奶牛反刍行为实时识别方法研究,通过协同注意力机制改进MobileNet v3网络提出了...

  • 标签: 奶牛反刍行为实时监测边缘计算改进MobileNet v3边缘智能模型Bi-LSTM
  • 简介:[目的/意义]奶牛跛行检测是规模化奶牛养殖过程亟待解决重要问题,现有方法检测视角主要以侧视为主.然而,侧视视角存在着难以消除遮挡问题.本研究主要解决侧视视角下存在遮挡问题.[方法]提出一种基于时空流特征融合俯视视角下奶牛跛行检测方法.首先,通过分析深度视频流跛行奶牛在运动过程位姿变化,构建空间流特征图像序列.通过分析跛行奶牛行走时躯体前进和左右摇摆瞬时速度,利用光流捕获奶牛运动瞬时速度,构建时间流特征图像序列.将空间流与时间流特征图像组合构建时空流融合特征图像序列.其次,利用卷积块注意力模块(Convolutional Block Attention Module,CBAM)改进PP-TSMv2(PaddlePad-dle-Temporal Shift Module v2)视频动作分类网络,构建奶牛跛行检测模型Cow-TSM(Cow-Temporal Shift Module).最后,分别在不同输..

  • 标签: 奶牛跛行检测时空融合视频动作分类深度图像注意力机制TSM
  • 简介:摘要 : 受经济和气候驱动,长江经济带水田空间格局发生了显著变化,影响区域粮食安全与生态安全。本研究基于 1990-2015年土地利用遥感监测数据,利用 GIS空间分析功能,探究长江经济带水田空间格局动态变化特征,采用当量因子法计算生态系统服务价值( ESV),分析了水田变化综合影响。结果表明: 1) 1990-2015年长江经济带水田规模持续缩减,共减少了 17390km2,减幅呈增长态势具有显著地域差异,长江中上游与下游水田减幅相差约为 9.56%。其中下游减幅较大,水田占区域比例随之降低,中上游恰好相反。 2)由于经济建设及水产养殖发展,水田主要转化为建设用地和水系,水田主要由水系、旱地和湿地等转化而来。长江三角洲城市群、长江中游及成渝城市群水田变化最为剧烈,建设用地侵占水田扩张现象分布广泛,水田转为水系主要在两湖平原局部地区。 3)水田与其他生态系统转化对 ESV是正影响,水田转为水系对此贡献最大,其转化规模决定了不同时期 ESV净增量大小,水系转化为水田损失价值最多,建设用地侵占水田次之。不同市域水田变化情况不一致,因此 ESV增减情况具有明显差异。 4)生态系统服务水文调节、水资源供给增强同时,食物生产、气体调节受到严重损害,与水资源规模扩大和水田资源大量流失有直接关系。研究结果有助于揭示长江流域水田时空变化过程及其对各项生态系统服务影响,可为区域土地利用规划、农业政策与生态可持续发展提供理论支持。

  • 标签: 水田 生态系统服务价值 长江经济带 权衡协同 时空变化 遥感数据
  • 简介:<正>各省、自治区、直辖市农药检定(管理)所(站):根据农农发[2000]7号“关于进一步做好农药登记管理工作通知”(以下简称《通知》),省级农药检定机构自《通知》发布之日起停止发放《农药分装登记证》和《卫生杀虫剂登记证》,并于2000年12月30日前,将已经发放证统一到我换取《农药临时登记证》。为做好换证和初审工作,特通知如下:

  • 标签: 卫生杀虫剂 农药 管理工作 通知 换证 分装
  • 简介:摘要 : 含水量是表征水稻生理和健康状况关键参数,精确预测水稻含水量对于水稻育种和大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长研究主要集中利用植被指数评估作物单一或者几个生育期生长参数,针对作物含水量监测研究非常有限。本研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层 RGB图像和多光谱图像,通过提取植被指数和纹理特征,分析水稻动态生长变化,并构建了基于随机森林回归方法含水量预测模型。试验结果表明:( 1)从无人机图像提取植被指数、纹理特征以及地面测量含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;( 2)与 RGB图像相比,多光谱图像评估水稻含水量具有更高潜力,其中归一化光谱指数 NDSI771,611实现了更好预测精度( R2=0.68, RMSEP=0.039, rRMSE =5.24%);( 3)融合植被指数和纹理特征能够进一步改善含水量预测结果( R2=0.86, RMSEP=0.026, rRMSE=3.51%),预测误差 RMSEP分别减小了 16.13%和 18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行,可为农田精准灌溉和田间管理决策提供新思路。

  • 标签: 无人机低空遥感 水稻含水量 RGB图像 多光谱图像 植被指数 纹理特征 特征融合
  • 简介:摘要 : 随着无线终端数量快速增长和多媒体图像等高带宽传输业务需求增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网作物表型信息采集系统存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵现象以及固定电池网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感器网络( CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制动态频谱和能耗均衡( DSEB)事件驱动分簇路由算法。算法包括:( 1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取可用信道、节点间距离、剩余能量和邻居节点度为相似度对被监控区域内节点进行聚类分簇并选取簇头,构建分簇拓扑过程对各分簇大小均衡引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;( 2)融入边缘计算事件触发数据路由,根据构建分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点 -主网关节点两种情况;( 3)基于频谱变化和通信服务质量( QoS)自适应重新分簇:基于主用户行为变化引起可用信道改变,或分簇效果不佳对通信服务质量产生干扰,触发 CRSN进行自适应重新分簇。此外,本研究还提出了一种新能耗均衡策略去能量消耗中心化(假设 sink为中心),即在网关或簇头节点选取计算式引入与节点到 sink距离成正比权重系数。算法仿真结果表明,与采用 K-medoid分簇和能量感知事件驱动分簇 (ERP)路由方案相比, CRSN节点数为定值前提下,基于 DSEB分簇路由算法在网络生存期与能效等方面均具有一定改进;主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

  • 标签: 认知无线传感器网络 (CRSN) 作物表型信息采集 能耗均衡 分簇路由
  • 简介:[目的/意义]天然牧场下放牧牲畜数量准确检测是规模化养殖场改造升级关键.为满足规模化养殖场对大批羊群实现精准实时检测需求,提出一种高精度、易部署小目标检测模型CSD-YOLOv8s(CBAM SP-PFCSPC DSConv-YOLOv8s),实现无人机高空视角下小目标羊只个体实时检测.[方法]首先,使用无人机获取天然草原牧场包含不同背景及光照条件下羊群视频数据并与下载部分公开数据集共同构成原始图像数据.通过数据清洗和标注整理生成羊群检测数据集.其次,为解决羊群密集和相互遮挡造成羊只检测困难问题,基于YOLO(You Only Look Once)v8模型构建具有跨阶段局部连接SPPFCSPC(Spatial Pyramid Pooling Fast-CSPC)模块,提升网络特征提取和特征融合能力,增强模型对小目标羊只检测性能.模型Neck部分引入了卷积注意力模块(Convolutional Blo...

  • 标签: 羊只检测YOLOv8小目标SPPFCSPC注意力机制深度可分离卷积
  • 简介:[目的/意义]小麦叶片数是衡量植株生长状况、确定茎蘖动态、调节群体结构重要指标之一.目前大田环境下小麦叶片计数主要依靠人工、耗时耗力,而现有的自动化检测计数方法效率与精度难以满足实际应用需求.为提高小麦叶片数检测准确,设计了一种复杂大田环境下高效识别小麦叶尖算法.[方法]本研究以手机和田间摄像头获取可见光图像构建了两种典型光照条件下出苗期、分蘖期、越冬期等多个生长期小麦叶片图像数据集.以YOLOv8为基础网络,融合坐标注意力机制降低背景环境干扰,提高模型对小麦叶尖轮廓信息提取能力;替换损失函数加快模型收敛速度;增加小目标检测层提高对小麦叶尖识别效果,降低漏检率.设计了一种适用于叶尖小目标识别的深度学习网络,通过检测图像叶尖数量从而得出叶片数.[结果与讨论]本研究提出方法对小麦叶尖识别精确率和mAP...

  • 标签: 小麦叶片叶尖识别叶片计数注意力机制YOLOv8深度学习