学科分类
/ 1
11 个结果
  • 简介:[目的/意义]小麦叶片数是衡量植株生长状况、确定茎蘖动态、调节群体结构的重要指标之一.目前大田环境下小麦叶片计数主要依靠人工、耗时耗力,而现有的自动化检测计数方法的效率与精度难以满足实际应用需求.为提高小麦叶片数检测的准确,设计了一种复杂大田环境下高效识别小麦叶尖的算法.[方法]本研究以手机和田间摄像头获取的可见光图像构建了两种典型光照条件下出苗期、分蘖期、越冬期等多个生长期的小麦叶片图像数据集.以YOLOv8为基础网络,融合坐标注意力机制降低背景环境的干扰,提高模型对小麦叶尖轮廓信息的提取能力;替换损失函数加快模型收敛速度;增加小目标检测层提高对小麦叶尖的识别效果,降低漏检率.设计了一种适用于叶尖小目标识别的深度学习网络,通过检测图像叶尖数量从而得出叶片数.[结果与讨论]本研究提出的方法对小麦叶尖的识别精确率mAP...

  • 标签: 小麦叶片叶尖识别叶片计数注意力机制YOLOv8深度学习
  • 简介:摘要 : 叶片湿润时间( LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染发育速率。为了准确地预测日光温室黄瓜病害的发生时间方位,本研究于 2019年 3月 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室的试验条件下获得了相似的准确度( ACC为 0.90 0.92),比相对湿度经验模型估算叶片湿润时间的准确度( ACC为 0.82 0.84)更高,平均绝对误差 MAE分别为 1.81 1.61 h,均方根误差 RSME分别为 2.10 1.87,决定系数 R2分别为 0.87 0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季秋季分别为 17.15 17.41 h/d。这些变化差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。

  • 标签: 日光温室 估算模型 区域化 叶片湿润时间 BP神经网络 传感器
  • 简介:<正>各省、自治区、直辖市农业(农林、农牧)厅(局、委):当前,农作物病虫害发生、流行已进入高峰期,正值农药生产、经营使用的旺季。为做好病虫害防治,保证安全生产,减少农药中毒、死亡事故的发生。各级农业部门要认真贯彻党中央、国务院领导同志关于安全生产的重要指示精神,把农药安全管理工作摆在突出位置,摆上各级领导的重要议事日程,切实负起责任,充分调动发挥农技推广执法管理部门的力量,保证措施到位。一、认真组织一次贯彻执行《农药管理条例》、《农药管理条例实施办法》、《农药

  • 标签: 农药安全 农药管理条例 农作物病虫害 农药生产 农业部门 执法管理
  • 简介:摘要 : 植物化学保护即使用植保机械喷施化学农药是当前最主要的病虫害防控方法,一直以来对保障农业生产安全与粮食有效供给起至关重要作用。能够实现按需精准施药、变量施药、人机分离与人药分离的高效、精准、智能的施药技术装备是提高农药药效与利用率的保证,也是保障食品安全、降低农民劳动强度的重要措施,是目前国内外研究的热点。本研究对精准施药关键技术及研究现状进行了分析,对适用于不同作业场景的精准施药装备的研究现状、典型代表、应用进展等进行了分类总结,分析了目前精准施药发展中面临的挑战,并提出了对策建议。本研究可为精准施药技术研究的推进、智能施药装备的研发现代化农业的发展提供参考思路。

  • 标签: 精准施药 变量施药 自动对靶喷雾 仿形喷雾机 喷杆喷雾机 无人机
  • 作者: 徐凌翔 1 陈佳玮 1 丁国辉 1 卢伟 2 丁艳锋 1 朱艳 3 周济 1 4*
  • 学科: 农业科学 > 农业基础科学
  • 创建时间:2020-06-02
  • 出处:《智慧农业(中英文)》 2020年第1期
  • 机构:1.南京农业大学作物表型组学交叉研究中心 /中英植物表型组学联合研究中心 /江苏省现代作物生产协同创新中心 /现代作物生产省部共建协同创新中心,江苏南京 210095; 2.南京农业大学工学院 /江苏省现代设施农业技术与装备工程实验室,江苏南京 210095; 3.国家信息农业工程技术中心 /农业农村部农作物系统分析及决策重点实验室 /智慧农业教育部工程研究中心 /江苏省信息农业高技术研究重点实验室,江苏南京 210095; 4.数字科学研发部,英国国立农业植物研究所 /剑桥作物研究中心,剑桥 CB3 0LE,英国
  • 简介:摘要 : 植物表型组学研究正逐渐向综合化、规模化、多尺度高通量的方向快速发展。本文首先介绍了植物表型研究的最新动向。然后针对室内表型监测平台的特点各类室内表型针对的表型性状进行了系统介绍,包括产量、品质、胁迫抗性(包括干旱、抗冷热、盐胁迫、重金属病虫害)等。在此基础上,本文还根据通量、传感器集成度和平台大小等把一些国内外流行的室内植物表型平台进行了分类,并介绍了这些室内表型平台在植物研究中的应用情况。同时,本文还介绍了室内表型数据的管理和解析方法。最后,本文着重讨论了室内表型平台的发展方向,并结合中国植物研究的实际情况对表型组学在中国的发展提出了展望,以期为中国植物表型研究提供指导建议。

  • 标签: 植物表型组学 室内表型监测 产量性状 品质性状 抗性表型 表型数据管理和解析分类
  • 简介:<正>各省(自治区、直辖市)农药检定(管理)所(站):为了调整优化农药产品结构,确保农产品的生产,保障人民群众身体健康,促进环境保护,根据农业部“关于加强农药残留监控工作的通知”农农发[2000]12号文件,决定撤销甲基对硫磷对硫磷(包括混剂)在果树上使用的登记。为做好此项工作,现将有关事项通知如下:

  • 标签: 甲基对硫磷 乳油 农药研究 股份有限公司 集团有限公司 农药化工厂
  • 简介:[目的/意义]随着奶牛养殖业向规模化、精准化信息化养殖迅速发展,对奶牛健康的监测管理需求也日益增加.实时监测奶牛的反刍行为对于第一时间获取奶牛健康的相关信息以及预测奶牛疾病具有至关重要的意义.目前,针对奶牛反刍行为的监测已经提出了多种策略,包括基于视频监控、声音识别、传感器监测等方法,但是这些方法普遍存在实时不足的问题.为了减轻数据传输的数量与云端计算量,实现对奶牛反刍行为的实时监测,基于边缘计算的思想提出了一种实时对奶牛反刍行为进行监测的方法.[方法]使用自主设计的边缘设备实时地采集并处理奶牛的六轴加速度信号,基于六轴数据提出了基于联邦式与拆分式边缘智能这两种不同的策略对奶牛反刍行为实时识别方法展开研究.在基于联邦式边缘智能的奶牛反刍行为实时识别方法研究中,通过协同注意力机制改进MobileNet v3网络提出了...

  • 标签: 奶牛反刍行为实时监测边缘计算改进MobileNet v3边缘智能模型Bi-LSTM
  • 简介:摘要 : 纳米材料具有特殊的尺寸效应和优异的光电性质,已在传感分析中得到高度重视广泛应用,大幅提高了传感分析技术的性能。近年来,智慧农业发展迅速,农产品质量安全作为农业生产的重要组成部分,对农业传感技术的灵敏度、稳定性检测通量等指标要求越来越高。本综述简要阐述了几种常用的纳米材料的性质特点,包括碳基纳米材料、金属纳米材料和金属 -有机框架材料等。重点论述了基于纳米材料的化学传感、生物传感、电化学传感光谱传感等常用传感分析技术器件,以及纳米传感分析技术在农产品质量安全,尤其在克伦特罗三聚氰胺等危害物 ,甲硝唑、二噁英类化合物 ,违禁添加物 ,真菌毒素,锌、镉、铅等目标物,丙烯酰胺、呋喃类、硝基呋喃类抗生素监测等方面的应用。纳米材料的制备修饰技术扔需要进一步提升,多目标、高通量纳米传感器件在实际应用中的价值广受关注,在线传感分析在农产品质量安全智慧监控方面有迫切需求需要快速、实时、在线监测。

  • 标签: 纳米材料 智慧农业 农产品质量安全 纳米传感器
  • 简介:<正>各省、自治区、直辖市农药检定(管理)所(站):根据农农发[2000]7号“关于进一步做好农药登记管理工作的通知”(以下简称《通知》),省级农药检定机构自《通知》发布之日起停止发放《农药分装登记证》《卫生杀虫剂登记证》,并于2000年12月30日前,将已经发放的证统一到我换取《农药临时登记证》。为做好换证初审工作,特通知如下:

  • 标签: 卫生杀虫剂 农药 管理工作 通知 换证 分装
  • 简介:摘要 : 水肥一体化自动装备的使用能够有效提高水肥资源利用率,但需要在作业前获知作物的营养状况及水肥需求量,而通过人工手持测量仪器来获取这些信息,存在着时效劳动强度大等缺点。针对以上问题,本研究以常见的作物玉米为研究对象,使用大疆精灵Ⅲ无人机携带 RedEdge-M多光谱相机在田间上空采集玉米多光谱图像,同时使用 YLS-D系列植株营养测定仪测量玉米植株的氮素水分含量等营养信息,根据这些信息将采集的图像分为 3个等级(每个等级共包含 530幅五通道图像,其中 480幅作为训练集, 50幅作为验证集),提出了一种基于卷积神经网络的玉米作物营养状况识别方法。并基于 TensorFlow深度学习框架搭建了 ResNet18卷积神经网络模型,通过向模型输入彩色图像数据五通道多光谱图像数据,分别训练出适合于彩色图像多光谱图像的玉米植株营养状况等级识别模型。试验结果表明:训练后的模型能够识别玉米作物的彩色图像多光谱图像,能够输出玉米的营养状况等级 GPS 信息,识别彩色图像模型在验证集的正确率为 84.7%,识别多光谱图像模型在验证集的正确率为 90.5%,模型训练平均时间为 4.5h,五通道图像识别平均用时为 3.56s。该识别方法可快速无损地获取玉米作物的营养状况,为有效提高水肥资源利用率提供了方法依据。

  • 标签: 智慧农业 卷积神经网络 多光谱图像 玉米作物 营养状况识别
  • 简介:[目的/意义]准确高效地获取马匹体尺信息是马产业现代化进程中的关键环节.传统的人工测量方法耗时长、工作量大,且会对马匹造成一定应激反应.因此,实现准确且高效的体尺参数自动测量对于制定蒙古马早期育种计划至关重要.[方法]选择Azure Kinect深度相机获取蒙古马双侧RGB-D数据,以YOLOv8n-pose为基础,通过在C2f模块中引入可变形卷积(Deformable Convolution v2,DCNv2),同时添加洗牌注意力机制(Shuffle Atten-tion,SA)模块优化损失函数(SCYLLA-IoU Loss,SIoU)的方法,利用余弦退火法动态调整学习率,提出一种名为DSS-YOLO(DCNv2-SA-SIoU-YOLO)的模型用于蒙古马体尺关键点的检测.其次,将RGB图中的二维关键点坐标与深度图中对应深度值相结合,得到关键点三维坐标,并实现蒙古马点云信息的转换.利用直通滤波、随机抽样一致(Random Sample Consensu...

  • 标签: 蒙古马体尺测量卷积神经网络注意力机制三维点云处理YOLOv8n-pose