简介:本文采用1995年以来的数据,对比了从1996年1月至2003年12月所报告的常规原油和天然气新增储量与《美国地质勘察局2000年世界石油评估》报告所评估的预测潜在储量和预测新增储量。在评估之后的8年中(相当于评估时间段的27%),已实现了大约28%的预测新增原油储量和大约ll%的预测潜在原油储量,以及略超过一半的预测新增天然气储量和大约10%的预测潜在天然气储量。在1995年至2003年期间,已发现油田中的新增原油储量超过了新发现油田的储量,从全球范围来说,这两者的比例为3:1。新增原油储量最多的地区为中东和北非,而储量最大的新发现油田则出现在非洲的下撒哈拉地区。新增天然气储量最多的地区为中东和北非,而储量最大的新发现气田则出现在亚洲的太平洋地区。按照油气当量计算,新发现气田的储量则超过了新发现油田的储量。
简介:大多数模拟预测方法都不适用于多段水力压裂页岩油气井进行产量预测。2010年引入油气业界的Duong递减法也不例外。在油气井进入边界主导流动(boundary—dominatedflow)(BDF)阶段后。这种方法的局限性就比较明显了。本文提出对Duong法进行拓展,以便使之能够适用于受各种裂缝组合样式(fracturefabrics)、井距以及流体类型(如天然气、饱和石油和不饱和石油)影响的油气井的长期生产动态预测。除了要克服Duong法自身的局限性之外,拓展后的方法还要弥补其他的常用产量预测方法的缺点。本次研究应当能够建立一个模型,把多段水力压裂水平井流动状态的物理过程(physicalprocess)纳入其中。这个拓展方法采用经验解、解析解和数值解来代表由多种实际流动状态组成的衰竭模型(depletionmodel)。这个方法采用Duong诊断图(diagnosticplot)[log(q/Gp)与log(t)关系图]实现线性流动阶段和边界主导流动阶段的定产(constantrate)和定压(constantpressure)解析解的归一化。它构成了非常规油气井的等效Fetkovich标准曲线,并充当识别裂缝间干扰出现时间的基准曲线,而且与阿普斯递减曲线的b值有关。数值模拟结果用于填补(fiuin)受各种裂缝几何形态、井距和流体类型影响的长期产量预测方面的空白。标准曲线参数包括裂缝间干扰出现的时间和各种流动状态下的流体流入比(fluidinfluxratio)。根据渗透率、裂缝间距和半长以及井距的不同,流体流入比介于0和1之间,其90代表孤立的流动状态,而1代表瞬变流动状态。本次研究结果不仅有助于业界更加准确地预测致密油藏和页岩气藏的产量,而且还有助于人们更好地理解产量递减的预测。文中还讨论了由历史生产数据和完井数据估算产量预测所需输入参数的方法,例如渗透率、裂缝间干扰出现的�
简介:在试井解释中,通常把压力与时间的对数曲线的斜率定义为导数。本文将一种新的判别方法叫做一阶压力导数(PPD),它是直角坐标中压力—时间关系曲线的斜率。作者假定,当一口井关井进行压力恢复试井时,压力会单调地上升,直到最后稳定为止。这就意味着PPD是一个连续下降的函数,直到井内压力完全恢复,导数为零。但是与井筒有关的现象可引起所测压力升高或降低,而与油藏的影响无关。试井分析的第一组函数中,有一个函数是区分井筒控制作用和油藏流体流动影响的函数,PPD是一种非常简单的识别工具,它强调非油藏作用产生的影响,因此,可以避免试井解释中的失误。
简介:本文介绍了勘探新区默勒和沃灵盆地7个成藏层带风险分析的方法及结果。这些成藏层带代表了不同的深海沉积体系,而且从陆坡上部到盆地底部的整个剖面上均有分布。和典型的新区一样,这两个盆地的钻井资料也很少,其成藏层带模型都是根据地震资料建立的,导致风险评价的定性程度很高,但据此可在这两个盆地中划分低、中、高风险水平的3种成藏层带类型。风险评价的目的有两个,第一是搞清楚各成藏层带内勘探前景较好的储层的厚度分布、结构及净毛比,第二是评价沉积模型的不确定性和现有数据的质量。我们说明了在成藏层带排序过程中,如何评价风险分析对确定有效成藏层带的作用,以及如何通过排序来系统筛选未来的勘探机会。这一研究流程的基础是地质模型的风险分析,因为这种分析是对储层分布、结构以及封盖层等方面的综合地质解释。总之,要对地质模型进行恰当的定性风险评价,其先决条件是认识储层的变化性和沉积特征的范围。成藏层带的风险性由区域风险因素构成,而这些区域风险因素是由区域沉积模型决定的。因资料品质差或资料缺乏而产生的不确定性同样也很重要。把成藏层带风险与因资料缺乏而造成的不确定性区分开,有助于提高决策质量,例如可以在获取勘探区块、购买资料或两者同时进行之间做出选择。
简介:对于意大利南部的大型裂缝油藏,目前急需解决的问题是:“石油储存在哪里?石油储量是多少?这些石油能被采出吗?”。为了更多了解岩石中石油分布的方式和不同岩心结构(基质、孔洞、裂隙)的产油能力,我们进行了很多研究工作。这些工作包括低温扫描电子显微技术(CryoSEM)和热解气相色谱法(GC—pyrolysis)、孔隙大小分布测量、薄片扫描电子显微(SEM)分析技术和许多专为这类岩石设计的非常规技术。我们对几个完整的岩心样品进行了核磁共振成像(NMR)分析,并在3—D基础上确定了不同孔隙度(微孔隙、孔洞、裂隙)的贡献。我们还采用一种依据渗滤理论的分析方法来区分渗透率贡献值,确定在什么条件下孔洞和裂隙可以形成传导系统。分析参数包括孔喉分布、喉道长度、配位数以及裂隙方位和孔隙度等。润湿性是一个估算产量的关键参数,我们用了一种测量介电常数的方法测量微孔隙和裂隙中的润湿性。所有这些参教都有助于我们加深对油藏的了解。