学科分类
/ 1
3 个结果
  • 简介:储层中微粒运移是储层损害的主要因素之一.利用速敏、正反向流动两种岩心流动实验可以直观判断储层中微粒运移,速敏实验是判断储层岩心微粒运移状况的基本方法.但单独运用速敏实验并不可靠,需要以正反向流动实验及储层相关地质资料为辅助加以分析判断.根据正反向流动实验曲线中渗透率的变化,可判断微粒运移.通过储层岩矿成分分析及胶结状态的观察结果等储层地质资料的分析,可以预测验证岩心微粒运移现象的发生状况.

  • 标签: 微粒运移 岩心流动实验 地质资料 储层损害 直观判断 反向流动
  • 简介:随着像光导纤维分布式温度传感器这样的温度测量方法的发展,可以获得高精度的水平井连续温度曲线图。在智能完井中,采用现代温度测量仪可探测到分辨率大约为0.1下的微温度变化,该方法有助于诊断井下流体状况。由于水平井开采过程中吸入流体温度不受升高的地温变化的影响,所以,各相态(油、水、气)的初始温差都是因摩擦的影响所致。采气时,通常引起温度降低;而吸入水的井筒可能升温也可能降温。吸水层的温度较高是由于产层之下的温热含水层的温水侵入引起的(水锥进)。由于流体温度特征的差异,产出水的温度可能比产出油的温度低。如果油和水产自同一深度,当油和水在孔隙介质中流动时,由于摩擦作用,油的温度会比水的温度增加的更多一些,导致产出水比产出油的流入温度低一些。由于流入温度较高,水锥进的吸水层位的温度变化曲线相对比较容易探测,但水从与油同一深度突破可能不是太明显。本文中,我们举例说明了流入条件的范围,水气吸入位置可以根据井的温度曲线图中所测量的温度变化来确定。采用数字井温预测模型(Yoshioka等,2005a),我们计算出了水侵条件下的温度变化。在计算过程中,我们假设,当生产井裸眼段的其它层位产油时,有一段剖面产水产气。根据地层敏感性研究,我们提出了水和气相对产出率的预测结果,水和气的相对产出率由井筒温度曲线可探测的温度异常确定。通过将该模型与一口水平井的实际温度录井资料拟合。我们证实该模型可用于确定吸水位置。

  • 标签: 预测模型 地温变化 水平井 入水 分布式温度传感器 温度变化曲线