简介:Wesynthesizedonequaternaryammoniumpolymericionicliquids(PILs)P[VBTHEA]ClandthreeimidazoliumPILsofP[VEIm]Br,P[VEIm]BF4,P[VEIm]PF6byfree-radicalpolymerizationinsolution.ThesePILswerecharacterizedbyFT-IR,1H-NMR,13C-NMR,TGA,XRDandSEM.TheirCO2adsorptioncapacitiesweremeasuredunderdifferentpressuresandtemperaturesbyconstant-volumetechnique.ItwasobservedthatquaternaryammoniumPILsofP[VBTHEA]ClhavehigheradsorptioncapacityforCO2thanthoseimidazoliumPILs,followingP[VBTHEA]Cl>P[VEIm]PF6>P[VEIm]BF4>P[VEIm]Br,whichmaybeascribedtohigherpositivechargedensityonammoniumcationthanthatonimidazoliumcationandthusstrongerinteractionwithCO2,consistentwiththeresultsfromdual-modeadsorptionmodelthatammoniumPILshavemuchhigherCO2bulkabsorptionthanimidazoliumPILs.CO2adsorptioncapacityofP[VBTHEA]Clis9.02mg/gunder295Kand1bar,whichiscomparabletothatofsomeotherPILs,andismuchhigherthanthatofthecorrespondingILsmonomer.ThesePILshavegoodadsorptionselectivityforCO2overN2andregenerationefficiency.
简介:Thomsonscatteringimaging(TSI)isproposedandexperimentallydemonstratedtoobservethefinestructureofthelaserwakefield.ByThomsonscatteringaco-propagatinglaserpulse,weobtainc/earimagesindicatingthatthewakefieldislikeanacalephswimmingbehindthepumplaser.Thewavelengthofthewakefieldobservedatdifferentelectrondensitiesagreeswellwiththetheory.Sincenomathematicstransformationisinvolved,TSIcouldbepotentiallyusedasanonlinemonitorforfuture'tabletop'plasmaaccelerators.
简介:Amine-silicacompositematerialsforpost-combustionCO2capturehaveattractedconsiderableattentionbecauseoftheirhighCO2uptakeatlowCO2concentrations,excellentCO2captureselectivityinthepresenceofmoisture,andlowerenergyrequirementsforsorbentregeneration.Thisreviewdiscussestherecentadvancesinamine-silicacompositesforCO2capture,includingadsorbentpreparationandcharacterization,CO2captureunderdryandmoistureconditionsatdifferentCO2partialpressures,sorbentregeneration,andstabilityaftermanycyclicsorption-desorptionruns.
简介:Co(II)-salenwasencapsulatedinMIL-100(Cr)metalorganicframeworkby"shipinabottle"tosynthesizeanewelectrocatalyst,Cosalen@MIL-100(Cr).ThematerialwascharacterizedbyXRD,FT-IR,UV-VisandN2-adsorption.TheCosalen@MIL-100(Cr)modifiedglassycarbonelectrodeexhibitsawell-definedreductionpeakatthepotentialof–0.21Vtowardtheoxygenreductionreaction(ORR)bycyclicvoltammetry(CV)inpH=6.84phosphatebuffer.Almost400mVpositiveshiftofpotentialatCosalen@MIL-100(Cr)modifiedelectrodeforORRcomparedwiththatatbareglassycarbon,indicatesthatCosalen@MIL-100(Cr)possessesexcellentelectrocatalyticactivity.ThetransferrednumberofelectronsforORRwasdeterminedbychronocoulometry.TheresultsuggeststhattheintroductionofCo(II)-salencomplexintoMOFincreasestheelectrocatalyticactivityviaafour-electronreductionpathway.Furthermore,thiselectrocatalystexhibitsgoodstabilityandreproducibility.
简介:
简介:Inthisstudy,apoly(etherblockamide)(Pebax1657)compositemembraneappliedforCO2capturewaspreparedbycoatingPebax1657solutiononpolyacrylonitrile(PAN)ultrafiltrationmembrane.Ethanol/watermixturewasusedasthesolventofPebaxandtheeffectsofethanol/watermassratiosandPebaxconcentrationonthepermeationpropertiesofcompositemembranewerestudied.Toenhancethecompositemembranepermeance,thegutterlayer,madefromreactiveaminosiliconecrosslinkingwithpolydimethylsiloxane(PDMS),wasdesigned.Theinfluenceofcrosslinkingdegreeofthegutterlayeronmembraneperformancewasinvestigated.Asaresult,aPebax/aminoPDMS/PANmultilayermembranewithhexaneresistancewasdeveloped,showingCO2permeanceof350GPUandCO2/N2selectivityover50.Theblendofpolyethyleneglycoldimethylether(PEG-DME)withPebaxascoatingmaterialwasstudiedtofurtherimprovethemembraneperformance.AfterbeingcombinedwithPEG-DMEadditive,CO2permeanceofthefinalPebax-PEG-DME/amino-PDMS/PANcompositemembranereached400GPUabovewithCO2/N2selectivityover65.
简介:TheadsorptionofCOonPtgroupmetals,asamostfundamentalelementaryreactionstep,hasbeenwidelystudiedincatalysisandelectrocatalysis.Particularly,thestructuresofCOonPt(111)havebeenextensivelyinvestigated,owingtoitsimportancetobothfundamentalandappliedcatalysis.Yet,muchlessisknownregardingCOadsorptiononaPt(111)surfacemodulatedbysupportedoxidenanostructures,whichisofmorerelevancetotechnicalcatalysis.Wethusinvestigatedthecoverage-dependentadsorptionofCOonaPt(111)surfacepartiallycoveredbyFeOxnanostructures,whichhasbeendemonstratedasaremarkablecatalystforlow-temperatureCOoxidation.Wefoundthat,duetoitsstrongchemisorption,thecoverage-dependentstructureofCOonbarePtisnotinfluencedbythepresenceofFeOx.But,oxygen-terminatedFeOxnanostructurescouldmodulatethediffusivityofCOattheirvicinity,andthusaffecttheformationoforderedCOsuperstructuresatlowtemperatures.Usingscanningtunnelingmicroscopy(STM),weinspectedthediffusivityofCO,followedthephasetransitionsofCOdomains,andresolvedthemoleculardetailsofthecoverage-dependentCOstructures.OurresultsprovideafullpictureforCOadsorptiononaPt(111)surfacemodulatedbyoxidenanostructuresandshedlightsontheinter-adsorbateinteractiononmetalsurfaces.
简介:MoleculardynamicssimulationsareperformedtostudythegrowthmechanismofCH4-CO2mixedhydrateinxCO2=75%,xCO2=50%,andxCO2=25%systemsatT=250K,255Kand260K,respectively.OursimulationresultsshowthatthegrowthrateofCH4-CO2mixedhydrateincreasesastheCO2concentrationintheinitialsolutionphaseincreasesandthetemperaturedecreases.Viahydrateformation,thecompositionofCO2inhydratephaseishigherthanthatininitialsolutionphaseandtheencagingcapacityofCO2inhydratesincreaseswiththedecreaseintemperature.ByanalysisofthecageoccupancyratioofCH4moleculesandCO2moleculesinlargecagestosmallcages,wefindthatCO2moleculesarepreferablyencagedintothelargecagesofthehydratecrystalascomparedwithCH4molecules.Interestingly,CH4moleculesandCO2moleculesfrequentlyreplacewitheachotherinsomeparticularcagesitesadjacenttohydrate/solutioninterfaceduringthecrystalgrowthprocess.Thesetwospeciesofguestmoleculeseventuallyacttostabilizethenewlyformedhydrates,withCO2moleculesoccupyinglargecagesandCH4moleculesoccupyingsmallcagesinhydrate.
简介:Wereportedabifunctionalmaterial,Cr-salenimplantedconjugatedmicroporouspolymer(Cr-CMP),whichisabletocaptureexcellentCO2amountsandhasaremarkablecatalyticactivitytowardsthecycloadditionreactionofCO2toepoxidesformingcycliccarbonatesatmildconditionswithoutadditionalsolvents.ThisheterogeneousCr-CMPcatalysthasasuperiorcatalyticactivitytoitsrelatedhomogeneouscatalystandcanbereusedmorethantentimeswithoutasignificantdecreaseincatalyticactivity.
简介:TheeffectofthecoadsorptionofCOandO2ontheZiff-Gulari-BarshadsurfacecatalyticreactionsysteminstudiedbyMonteCarlosimulation.ThecoadsorptionofbothspeciesaddsanextrareactionsteptotheclassicalZiff-Gulari-Barshadmodel.Itisshownthatthesecond-orderphasetransitionfromthereactivestatetotheO-passivatedstateintheZiff-Gulari-Barshadmodeliseliminated,andtheproductionrateofCO2increaseslinearlyalongthefractionycoofCOingasphasewhenitislow,inagreementwithexperimentalresults.WealsofindthattheincreaseoftheprobabilityofthecoadsorptionleadstothedecreaseofthecriticalvalueofycoofthediscontinuousphasetransitiontotheCO-passivatedstate.
简介:Bimetalliccobalt-rutheniumnanocatalystssupportedoncarbonnanotubes(CNTs)arepreparedusingmicroemultiontechniquewithwater-to-surfactantratiosof0.5—1.5.ThenanocatalystswereextensivelycharacterizedbydifferentmethodsandtheiractivityandselectivityinFischer-Tropschsynthesis(FTS)havebeenassessedinafixed-bedmicroreactor.Thephysicochemicalpropertiesandperformanceofthenanocatalystswerecomparedwiththecatalystpreparedbyimpregnationmethod.Verynarrowparticlesizedistributionhasbeenproducedbythemicroemulsiontechniqueatrelativelyhighloadingsofactivemetals(15wt%Coand1wt%Ru).AccordingtoTEMimages,smallCoparticles(2—7nm)weremostlyconfinedinsidetheCNTs.Comparingwiththecatalystpreparedbyimpregnation,theuseofmicroemulsiontechniquewithwatertosurfactantratioof0.5decreasedtheaveragecobaltoxideparticlesizeto4.8nm,thedispersionwasalmostdoubledandthereductionincreasedby28%.Activityandselectivitywerefoundtobedependentonthecatalystpreparationmethodandwater-to-surfactantratio(aswellascobaltparticlesizes).COconversionincreasedfrom59.1%to75.1%andtheFTSrateincreasedfrom0.291to0.372gHC/(gcath).C5+liquidhydrocarbonsselectivitydecreasedfrom92.4%to87.6%.
简介:Recentadvancesontheuseofnanocarbon-basedelectrodesfortheelectrocatalyticconversionofgaseousstreamsofCO2toliquidfuelsarediscussedinthisperspectivepaper.Anovelgas-phaseelectrocatalyticcell,differentfromthetypicalelectrochemicalsystemsworkinginliquidphase,wasdeveloped.Thereareseveraladvantagestoworkingasphase,e.g.noneedtorecovertheproductsfromaliquidphaseandnoproblemsofCO2solubility,etc.Operatingundertheseconditionsandusingelectrodesbasedonmetalnanoparticlessupportedovercarbonnanotube(CNT)typematerials,longC-chainproducts(inparticularisopropanolunderoptimizedconditions,butalsohydrocarbonsuptoC8-C9)wereobtainedfromthereductionofCO2.Pt-CNTaremorestableandgiveinsomecasesahigherproductivity,butFe-CNT,particularusingN-dopedcarbonnanotubes,giveexcellentpropertiesandarepreferabletonoble-metal-basedelectrocatalystsforthelowercost.ThecontrolofthelocalizationofmetalparticlesattheinneroroutersurfaceofCNTisanimportactfactorfortheproductdistribution.ThenatureofthenanocarbonsubstratealsoplaysarelevantroleinenhancingtheproductivityandtuningtheselectivitytowardslongC-chainproducts.TheelectrodesfortheelectrocatalyticconversionofCO2arepartofaphotoelectrocatalytic(PEC)solarcellconcept,aimedtodevelopknowledgeforthenewgenerationartificialleaf-typesolarcellswhichcanusesunlightandwatertoconvertCO2tofuelsandchemicals.TheCO2reductiontoliquidfuelsbysolarenergyisagoodattempttointroducerenewablesintotheexistingenergyandchemicalinfrastructures,havingahigherenergydensityandeasiertransport/storagethanothercompetingsolutions(i.e.H2).