简介:本文考虑了一类具时滞扰动的高维系统,利用不动点定理,建立了保证其撬周期解的存在性、唯一性和稳定性的充分性条件,推广了相关文献的主要结论.
简介:本文基于文献[1]-[7],研究自共扼高维线性偏微分方程组的Cauchy问题一致适定性的充分条件,导出了一类抛物型方程组,并推广了文[7]的结果。
简介:主要利用较文献[4]更为简明的方法证明了有关有限域Fq(q为一个素数幂)上的以l为周期的n次不可约多项式的个数的结论。另外,本文结合结合初等数论知识得到了前面这个结论的几个推论,并对利用低次不可约多项式构造高次不可约多项式进行了研究。
具时滞扰动的高维系统概周期解的存在性、唯一性和稳定性
高维变系数自共轭线性偏微分方程组Cauchy问题的一致适定性
确定有限域上给定周期的不可约多项式的个数以及利用低次不可约多项式构造高次不可约多项式