学科分类
/ 3
59 个结果
  • 简介:对于半平面中的调和函数,在本文中证明了如果它的正部满足某些限制增长条件,则它可以用半平面边界上的积分表示出来并且它的绝对值也满足类似的增长条件,这一结果改进了在半平面中调和函数的某些经典结果.

  • 标签: 调和函数 积分表示 估计
  • 简介:分析了模糊集贴近度理论,得到模糊集贴近度表示的几种形式,为贴近度的实际应用提供了极大的方便.

  • 标签: 模糊集 贴近度 隶属函数
  • 简介:本文提出的MMD算法用于提高模型区别错误信息和正确信息的能力.利用该算法在对模型的参数进行重估计时.涉及到复杂的目标函数的梯度运算.击运用矩阵运算使得梯度运算变得简单明了,因此本文给出了MMD算法下的HMM参数重估计的矩阵表示形式并给出了证明.

  • 标签: 最大模型距离 梯度法 隐马尔可夫模型 重估计 矩阵表示 D算法
  • 简介:分数阶微积分是一个古老而又新颖的课题,近30年来,由于在包括分形现象在内的物理、工程等诸多应用学科领域应用的拓展,激发了科研人员对分数阶微积分的巨大热情。分数阶微分方程现在已应用于分数物理学、混沌与湍流、粘弹性力学与非牛顿流体力学、高分子材料的解链、自动控制理论、化学物理、随机过程和反常扩散等许多科学领域。分数阶微分方程边值问题是非线性常微分方程理论研究中一个活跃而成果丰硕的领域。本文讨论了分数阶微分方程边值问题的一些理论,介绍了作者的著作《分数阶微分方程边值问题理论及应用》的基本内容。

  • 标签: 分数阶微积分 边值问题 分数阶模型
  • 简介:本文给出了分数阶积分微分方程的一种新的解法.利用未知函数的泰功多项式展开将分数阶积分微分方程近拟转化为一个涉及未知函数及其n阶导数的线性方程组.数值例子表明该方法的有效性.

  • 标签: 泰勒多项式 分数阶 积分微分方程
  • 简介:设{Ei:i∈I}是侧完备Riesz空间E中的一族理想,且Ei∩Ej=φ(i,j∈I,ij).文章引入理想族{Ei:i∈I}直和的概念,并给出一个表示定理.文章证明了:存在一个完备的正则Hausdorff空间X使得理想族的直和Riesz同构于C(X)其充要条件是对每个i∈I存在一个紧Hausdorff空间Xi使得EiRiesz同构于C(Xi).

  • 标签: 侧完备 理想 直和 Riesz同构
  • 简介:叶圣陶先生说过:“教材只能作为教课的依据,要教得好,使学生受到实益,还得靠教师的善于运用.”因此,尽管是相同的教材内容,由于班级之间学生学习水平的差异,教师个人水平、能力及个性的差异,对教材的不同理解以及他们自身对“求异”的渴望,都会产生对课堂的“异构”.

  • 标签: 异构 教学 字母 教材内容 学生 教师
  • 简介:本文研究了基于最小路径描述的多源点多汇点网络系统可靠性问题。定义了最小路径矩阵的几种运算,利用所定义的运算,将多源点多汇点网络系统转化为等价的单源点单汇点网络系统,并给出了由子系统可靠度精确表示网络系统可靠度的解析表达式。这种解析表达是非常重要的,它是系统可靠性的理论研究与实际应用的一个极为有效的工具。

  • 标签: 网络系统 最小路径 源点 汇点 可靠度
  • 简介:本文在[1]的基础上,通过构造带权的Cauchy—Leray核,得到了一般复流形上的(p,q)形式的带权因子的积分表示和带权子的Koppelman—Lerey—Noryuet公式.

  • 标签: 复流形 积分表示 权因子 公式 一般 形式
  • 简介:应用Gteen函数将分数阶微分方程边值问题可转化为等价的积分方程.近来此方法被应用于讨论非线性分数阶微分方程边值问题解的存在性.讨论非线性分数阶微分方程边值问题,应用Green函数,将其转化为等价的积分方程,并设非线性项满足Caratheodory条件,利用非紧性测度的性质和M6nch’s不动点定理证明解的存在性.

  • 标签: 边值问题 非紧性测度 Carathéodory条件 分数阶微分方程 CAPUTO分数阶导数
  • 简介:在文[1]的基础上.本文对球面上的变阶分数次积分进行了研究,得到它关于Zygmund性质的—个定理.

  • 标签: 分数次积分 球面 定理 性质 基础
  • 简介:通过定义合适的线性空间以及范数,给出恰当的算子,在非线性项和脉冲值满足一定的条件下,分别利用压缩映像原理和krasnoselskii不动点定理,研究了分数阶脉冲微分方程边值问题解的存在性和唯一性。

  • 标签: 压缩映像原理 脉冲 微分方程组 分数阶微积分 边值问题
  • 简介:数学教学是一个不断学习的过程,如何上好一节课是一门高深的学问.兴趣是最好的老师,课堂教学也同样如此,引人人胜的课堂导入,既能吸引学生的注意力,又能激发起学生的强烈求知欲!

  • 标签: 数学课堂 教学实录 数列 艺术 数学教学 课堂教学
  • 简介:设F24为实一阶李群—F4的一个实型式,我们用F4的weyl群来参数化F24的广义主系列表示,因此,我们可以利用[1]提出的方便和直接的方法对奇异无穷小特征来计算F24的广义主系列表示的组合因子。

  • 标签: 李群 组合因子 主系列 参数化 注记 无穷小
  • 简介:研究了一类带积分边值条件的Riemann-Liouville型分数阶微分方程边值问题.在只要求非线性项满足Li-Caratheodory条件的情况下,运用单调迭代方法和上下解方法建立并证明了边值问题正解的存在性定理,最后给出例子用以表明所得结论的适用性.

  • 标签: 分数阶微分方程 边值问题 正解 上下解方法
  • 简介:在自反Banach空间中运用对偶映射方法给出闭稠定满射线性算子的集值度量右逆的表示.拓广了已有的相应结果.

  • 标签: 自反BANACH空间 度量右逆 凸二次规划