学科分类
/ 6
116 个结果
  • 简介:本文利用共轭C0半群的扰动理论研究了无界容许控制算子,在太阳自反和太阳自反Banach空间分别导出了一些容许性判据,并把这些抽象结果应用到了有限和无限延滞方程.

  • 标签: 容许无界控制算子 太阳自反性 对偶C0半群 延滞方程
  • 简介:利用上下解方法,锥理论,Schauder不动点定理,Amann不动点定理以及映射度理论研究Sturm—Liouville边值问题(SL.ρ),在某些特定条件下,得到了有多重负解的存在性结论.从而一定程度上推广和改进了最近的相关结果.

  • 标签: Sturm—Liouville边值问题 正规体锥 上下解方法 不动点 映射度
  • 简介:设X是一个实Banach空间,X*为其对偶空间,G是X的开、有界子集.T:D(T)(属于)X→2^x是m-增生算子,C:D(T)→X是有界算子.分别在C(T+I)-1扩张与C(λT+I)-1紧的情况下,利用凝聚映射的度理论,考虑了方程0∈-R(T+C)的可解性问题.定理4中在边界条件只为(I-(T+C))(D(T)∩(э)G)(∪)(^-G)的情况下用L-S度理论考虑了方程0∈-(T+C)(D(T)∩G)的可解性问题.这些定理推广了一些已有结果.

  • 标签: M-增生算子 凝聚映射 严格集压缩映射 凝聚映射同伦
  • 简介:给出了由压缩函数族Si(x)=(x/M)+(i/m),(M>m>1,i=0,1,2,…,m-1)通过限制某个Si出现的方式而产生的压缩不变案Ex,v.根据一个相关序列案个数的特征及连分数性质,证明了集Ex,v的盒维数与Hausdorff维数相等.

  • 标签: 强正则性 自相似集 HAUSDORFF维数 相关序列 函数族 连分数
  • 简介:充分利用图的字典积的结构证明了以下结论:如果图G_1的每连通分支都平凡,图G_2的阶数大于3,那么它们的字典积G_1[G_2]具有零3-流.

  • 标签: 非零整数流 字典积
  • 简介:本文从复杂网络理论出发,在分析原有乳腺癌易感基因数据的基础上,综合统计分析易感基因彼此之间的关联与乳腺癌疾病之间的关系,并以此构建乳腺癌致病基因蛋白质网络.通过计算和研究网络度,聚类系数等指标发现,此网络具有高度聚集性,即少数核心节点控制着整个网络结构的稳定性.这将为进一步研究和发现乳腺癌致病基因提供新的理论依据和方法.

  • 标签: 乳腺癌 复杂网络 蛋白质网络
  • 简介:首先明确了《线性代数(数学专业)》整体教学的目的和实践的过程,其次从学生构建《线性代数》知识、技能和思想方法的角度总结了《线性代数》整体教学实践的一些体会,最后指出《线性代数》整体教学应把握数学观念,更好地将启发式教学与问题解决结合起来.

  • 标签: 《线性代数》 整体教学 认知结构 线性方程组
  • 简介:考虑自治具有阶段结构种群扩散和收获的时滞生态模型.运用泛函微分方程的单调流理论和凹算子理论,得到唯一正周期解的存在性和全局渐进稳定性.并得到收获阈值.该结论说明只要收获量不超过其阈值,通过扩散则种群可以保持持续生存,而且稳定在一个周期震荡水平.对合理利用生物资源和保持生物多样性具有理论指导意义.

  • 标签: 阶段结构 单调流理论 凹算子理论 BROUWER不动点定理 稳定性
  • 简介:在自反、严格凸、光滑的Banach空间中,设计了一种修正的混合投影迭代算法用来构造平衡问题与拟φ-渐近扩张映像的不动点问题的公共元,并利用广义投影算子和K-K性质证明了此迭代算法生成的序列强收敛于这两个问题的公共元.所得结果是近期相关结果的改进和推广.

  • 标签: 拟φ-渐近非扩张映像 平衡问题 修正的混合投影迭代算法
  • 简介:规则图形阴影面积的求解是初中数学教学难点.合理利用几何画板的动态平移、反射、旋转等变换方法,不仅能突破求阴影面积的教学难点,而且可以激发学生的学习兴趣和求知欲望.

  • 标签: 教学难点 规则图形 几何画板 面积 阴影 合理利用
  • 简介:本文的目的是研究如下局部椭圆算子方程在Dirichlet边界条件下变号解的存在性{-Lku=f(x,u)inΩ,u=0,inR^n/Ω,其中Ω∈R^n(n≥2)是具有光滑边界的有界区域,非线性项f满足超线性以及次临界增长条件.利用变号临界点定理,证明了在更弱的条件下无穷多变号解的存在性.

  • 标签: 变号临界点 非局部椭圆算子 CERAMI条件
  • 简介:讨论Curto-Fialkow所给出的四阶截断复矩问题,即给一个复数序列γ≡γ~((4)):γ_(00),γ_(0)1,γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),其中γ_(00)〉0,γ_(ij)=y_(ji),找到一个正的Borel测度使得γ_(ij)=∫-izz~jdμ(0≤i+j≤4)成立;得到了四阶奇异截断复矩矩阵M(2)的平坦延拓存在的充分必要条件及在特殊情况下的解,并举例进行了验证.

  • 标签: 四阶非奇异截断复矩问题 表示测度 平坦延拓 矩量矩阵 BOREL测度