简介:利用自反Banach空间中弱紧算子的因子分解技巧,对于一类非齐次项具有连续Lipschitz扰动的柯西问题,当其齐次项算子生成强连续算子半群且具有紧豫解式限制时,证明了方程强解的存在性.
简介:利用上下解方法,锥理论,Schauder不动点定理,Amann不动点定理以及映射度理论研究Sturm—Liouville边值问题(SL.ρ),在某些特定条件下,得到了有多重非负解的存在性结论.从而一定程度上推广和改进了最近的相关结果.
简介:本文利用对非牛顿粘性不可压缩流方程对时间t的解析性和长时间渐近性估计,具体构造了它的近似惯性流形,并得出收敛阶估计。
简介:考虑非自治具有阶段结构种群扩散和收获的时滞生态模型.运用泛函微分方程的单调流理论和凹算子理论,得到唯一正周期解的存在性和全局渐进稳定性.并得到收获阈值.该结论说明只要收获量不超过其阈值,通过扩散则种群可以保持持续生存,而且稳定在一个周期震荡水平.对合理利用生物资源和保持生物多样性具有理论指导意义.
简介:在自反、严格凸、光滑的Banach空间中,设计了一种修正的混合投影迭代算法用来构造平衡问题与拟φ-渐近非扩张映像的不动点问题的公共元,并利用广义投影算子和K-K性质证明了此迭代算法生成的序列强收敛于这两个问题的公共元.所得结果是近期相关结果的改进和推广.
简介:讨论Curto-Fialkow所给出的四阶截断复矩问题,即给一个复数序列γ≡γ~((4)):γ_(00),γ_(0)1,γ_(10),γ_(02),γ_(11),γ_(20),γ_(03),γ_(12),γ_(21),γ_(30),γ_(04),γ_(13),γ_(22),γ_(31),γ_(40),其中γ_(00)〉0,γ_(ij)=y_(ji),找到一个正的Borel测度使得γ_(ij)=∫-izz~jdμ(0≤i+j≤4)成立;得到了四阶非奇异截断复矩矩阵M(2)的平坦延拓存在的充分必要条件及在特殊情况下的解,并举例进行了验证.