简介:利用Liapunov函数方法,研究了一类一般的非线性系统周期解的存在唯一性与渐近稳定性,得到了存在唯一渐近稳定周期解的充分条件。
简介:主要得到整函数与其导函数具两个公共小函数时的一个唯一性定理,改进了RubelYang及郑稼华等人的某些结果.
简介:旨在Banach空间中研究微分包含的周期边值问题(PBVP).假设F(t,u)仅满足弱Carathèodory条件,并不使用紧性条件,然而仍证明了该PBVP的唯一解能通过迭代序列的一致极限得到,并且还给出了解的误差估计.
简介:研究具有四个分担值的亚纯函数的唯一性问题,对Gunderson的一个结果做了改进。
简介:运用Hadmard反函数定理讨论了一类满足渐近非一致性条件的常微分方程组解的存在唯一性,推广了已有结果.
简介:利用新的比较结果和半序方法,研究TBanach空间中二阶积-微分方程组初值问题解的存在唯一性及逼近解的迭代序列和误差估计.