简介:本研究从中等空间分辨率遥感影像(如LandsatTM影像)的地物光谱响应曲线入手,介绍分析了国内外几种常用的建筑用地提取指数构建原理.然后选取LandsatTM影像进行建筑用地提取实验,并用QuickBird和GoogleEarth的同期影像辅以验证.实验得出,比值居民地指数RRI,由于其作者构建时并没有对影像进行辐射校正,从而影响了提取精度和模型适用性;归一化建筑指数NDBI和差值建筑覆盖指数DBI,提取精度相对较高,但是会混有裸土、污染水体等信息;指数型建筑用地指数IBI和增强的指数型建筑用地指数EIBI,提取精度最高,达到92%.虽然EIBI期望改进IBI未能很好抑制裸土信息的问题,但实际上所构建指数并没有较好的去除裸土信息,可能是其权重选择没有普适性,所以建议建筑信息提取优先使用IBI.
简介:针对LIDAR点云数据中建筑物和植被难以快速分类的问题,提出了应用FCM(FuzzyC-Mean)模糊聚类的方法对离散机载激光点云数据进行建筑物和植被分类的方法.首先针对机载点云数据的特点采用了平面投影的Delaunay构网方法进行点云的三角网重构,然后根据三角网的法向矢量信息的属性不同,利用FCM方法和改进的方位矩阵方法对其进行模糊聚类,进而实现建筑物和植被等不同属性的点云分类.该方法可快速将点云进行分类,且分类结果可用不同颜色进行空间显示.在此基础上,采用IDL(Interfacedescriptionlanguage)语言编制了三维激光点云可视化分类软件LIDARVIEW.并应用该软件对某区域的机载点云数据进行了分类实验.实验结果表明:(1)基于平面投影的Delaunay构网方法特别适合机载LIDAR点云数据的快速构网,且该方法构网速度快、效率高;(2)应用FCM模糊群聚的方法和改进的方位矩阵方法适用于机载LIDAR数据的植被和建筑物分类,分类速度快且效果好;(3)FCM模糊群聚方法对机载LIDAR数据的群聚分类结果可靠、合理,具有较强的通用性和推广性.