简介:针对无限域上一维热传导方程的解析解为反常积分形式,直接计算往往比较困难.首先采用Fourier变换给出问题解析解,其次结合解析解的形式和无限域上Gauss型数值积分法精度高的优点,将半无限域上的一维热传导方程问题利用Gauss-Laguerre数值积分计算数值解,对无限域上的一维热传导方程的解析解转化为半无限域上的形式后用Gauss-Laguerre数值积分计算.实验结果表明,本文给出的数值解方法具有很高的精度.
简介:在不同工况下,旋转爆震波能够以单波、双波、多波模式进行传播.但在同一工况下,是否存在不同模式的稳定传播爆震波还有待进一步研究.基于Euler方程,耦合氢气/空气的有限化学反应速率模型,并采用高分辨率的5阶有限差分格式WENO-PPM5离散对流项,对三维旋转爆震波进行了数值模拟.计算结果表明,在同一特定工况下,旋转爆震波能够以两种不同的传播模式稳定传播,即单波模式和双波模式.详细地对比了两种传播模式下的流场特征、爆震波传播特性、推力性能等.在同一工况下,两种传播模式的爆震波周向传播速度相差不多,但双波模式的频率约为单波模式的2倍;双波模式下质量流量、比冲、推力的平均值均略高于单波模式;且双波模式的可燃混气层高度约为单波模式的1/2,这有助于缩小旋转爆震发动机的长度,使之更加紧凑.
简介:文章考察了相邻双侧边盖驱动方腔流动(即上壁面向右运动和左侧壁面向下运动)的三维线性整体稳定性.首先,采用Taylor—Hood有限元方法并经由Newton迭代过程计算得到双侧边盖驱动方腔流动的二维稳态基本流.其次,Taylor—Hood有限元在ChebyshevGauss配置点上进行离散,同时Gauss配置点也可以用于线性稳定性方程的高阶有限差分格式离散.然后,离散得到的矩阵形式的广义特征值问题可以结合shift-and—invert算法采用隐式重启Amoldi方法计算.最后,通过对线性稳定性方程特征值的计算,发现了一个最不稳定的驻定模态和两对对称行波模态.最不稳定的三维驻定模态的临界Reynolds数为Ree=261.5,远远小于二维不稳定的临界Revnolds数Ree2d=1061.7.通过画出这3类三维不稳定模态的流向扰动速度和扰动涡量的空间等值面图像,可以发现不稳定扰动位于稳态基本流的两个主涡区域,因此可以认为主涡区域是三维扰动失稳的主要能量来源地.