简介:摘要:我国国民经济以及电力相关技术的发展,使得我国的电力事业得到了较快的发展,而在整体电力系统中关键的设施之一就是电力变压器,和电力系统之间的安全稳定运行有着十分紧密的联系,这也正是对其进行检测工作的重要原因。在微电子、计算机等先进技术不断发展的影响下,针对电力变压器进行在线实时监测已经有了极高的可行性。因为油浸性质的电力变压器在运行过程中气体溶解的类型不会出现对应的差异,传统故障诊断方式对于这些复杂多变且无标签的数据无法进行充分应用,因此一种基于深度学习神经网络的诊断方式应运而生。本文先从深度学习的概念以及深度学习神经网络模型分析入手,并在文后详细的在电力变压器故障诊断中如何运用深度学习网络进行了分析。
简介:摘要:本文针对现役火电厂脱硝改造工程的造价估算,通过对影响脱硝改造造价的主要因素进行综合分析,利用 MALTAB软件构建了基于 BP人工神经网络的火电厂脱硝工程造价的快速估算模型。通过现有工程造价实例对快速估算模型进行训练、模拟及测验,并将模型估算值与现有工程造价实例进行了对比,结果表明该方法可以较好的估算火力发电厂脱硝改造的工程投资。该模型具有较好的快速性及适用性,可以为估算工程造价提供参考。
简介:摘要:在市场经济发展背景下,电力行业竞争局势日益严峻,电力企业需要提高自身的服务质量,增强经济效益,才能保障其综合竞争实力的提升。电能计量与电力企业的经营管理效率息息相关,但是电压互感器二次回路压降对电能计量的准确性产生不利影响,降低电能计费的公正性,损坏电力企业和用户的切身利益。因此需要加强对电压互感器二次回路压降的优化管理和合理改造,保障电能计量的精准性。本文主要对电压互感器二次回路压降对电能计量的影响以及优化策略进行研究,旨在进一步提升电能计量准确性,促进电力系统的稳定性运行,提高电力企业的经济效益。
简介:摘要:风能相较于传统能源拥有着巨大的优势,但风电场投建初期数据不足的问题往往为研究人员所忽略。本文在研究 BP 神经网络的基础上,针对训练量不足的问题,提出了运用插值法对预测结果进行修正的方法,使得不同阶段的预测精度相较于传统神经网络有不同程度的提高,表明了本文方法的价值与意义。