简介:针对传统数值方法求解微分-代数方程过程中经常遇到的违约问题,本文以空间太阳能电站太阳能接收器的简化二维模型为例,采用辛算法模拟了简化模型的展开过程,研究了辛算法在求解过程中约束违约问题.首先,基于Hamilton变分原理,将描述简化二维模型展开过程的Euler-Lagrange方程导入Hamilton体系,建立其Hamilton正则方程;随后,采用s级PRK离散方法离散正则方程,得到其辛格式;最后,采用辛PRK格式模拟太阳能接收器的二维展开过程.模拟结果显示:本文构造的辛PRK格式能够很好地满足系统的位移约束.
简介:研究了非线性随机动力系统所对应的Fokker-Planck-kolmogorov(FPK)方程.讨论了微分方程的可朗克(Crank)一尼考尔逊(Nicolson)型隐式有限差分格式以及微分的四阶中心差分格式,将两者相结合,得到FPK方程的四阶中心C-N隐式格式差分解,并与FPK方程的精确解进行了比较.数值结果表明,该方法具有良好的稳定性,且可以解决其他方法在概率密度峰值处偏小,而在尾部处较大等缺点.
简介:研究了一类具有时滞及非线性特性发生率的SIRS传染病模型,首先利用特征值理论分析了无病平衡点和地方病平衡点的局部稳定性;并以时滞τ作为分岔参数,分析了模型的Hopf分岔行为,运用中心流形定理和规范型理论给出了分岔方向及分岔周期解稳定性的计算公式;最后,数值模拟验证了理论分析结果.
空间太阳能电站太阳能接收器二维展开过程的保结构分析
随机外激非线性系统FPK方程的四阶中心C-N型隐式差分解
一类具有时滞和非线性发生率的SIRS传染病模型稳定性与Hopf分岔分析