学科分类
/ 2
29 个结果
  • 简介:首先建立了柔性悬臂梁非线性非平面运动的偏微分方程;然后运用Galerkin和多尺度方法得到平均方程,并利用规范形理论进一步将方程化简;最后用能量相位法求出多脉冲跳跃的能量函数序列.Dynamics软件数值计算表明:在系统中确实存在着由多脉冲跳跃而导致的Smale马蹄型混沌.

  • 标签: 非线性动力系统 混沌动力学 柔性悬臂梁 多脉冲轨道分析
  • 简介:为揭示弹箭在高空飞行过程中由于重力持续作用产生大攻角的物理本质,建立了弹道平面内时变参数的弹体运动数学模型,并推导了弹体在高空飞行段的攻角响应方程.同时,为了分析弹道顶点附近锥形运动的稳定性,综合考虑弹体姿态运动和位移运动建立了旋转弹锥形运动的动力学模型.针对大攻角引起显著气动非线性效应的情况,采用李雅普诺夫一级近似方法,给出了弹道顶点附近弹体锥形运动的稳定判据,并通过数值仿真验证了其正确性.

  • 标签: 旋转弹 锥形运动 复攻角 气动非线性 李雅普诺夫方法
  • 简介:考虑环境阻尼因素的影响,研究了具有运动约束作用Kelvin-Voigt型输流曲管的混沌运动现象.数值仿真表明,输流曲管系统在某些参数取值时具有混沌运动的可能,管道材料的粘弹性系数和环境阻尼等因素对曲管的动力响应产生较大的影响.这些结论可为工程管道系统的铺设与设计提供参考.

  • 标签: 混沌运动 阻尼作用 环境 t型 数值仿真 约束作用
  • 简介:研究了在地基波动影响下非线性粘弹性桩中的混沌运动.假定桩体材料满足Leaderman非线性粘弹性本构关系,得到在轴向载荷作用下满足Winkler条件的地基土波动方程、桩与地基土耦合振动方程;利用Galerkin方法将非线性积分-微分方程简化,并进行了数值计算,揭示了非线性粘弹性桩包括混沌运动在内的动力学行为.

  • 标签: 粘弹性桩 波动影响 运动分析 非线性粘弹性本构关系 GALERKIN方法 WINKLER
  • 简介:探讨了摆的非线性振动方程的新解法.由此方程和初始条件着手,可推导出一系列派生性质,它们包括:最大位移,最大速度,初始加速度和相平面上的相轨线.把近似运动表成Fourier级数的形式,其中圆周频率也是待定的.令近似运动满足这些派生性质,便可以定出待定的Fourier系数和圆周频率.文中提出了4参数法和5参数法,即:4个或5个待定的Fourier系数和圆周频率.分析计算表明,4参数法己有较高的精度,5参数法的结果己和精确解相差甚微.

  • 标签: 非线性振动方程 性质 派生 FOURIER级数 参数法 初始条件
  • 简介:研究了变速轴向运动黏弹性梁参激振动受拉力扰动时在主参数共振和组合参数共振范围内的稳定性.轴向运动梁的黏弹性本构关系引入了物质时间导数.当参激频率接近某一阶固有频率2倍时将发生主参数共振;当参激频率接近某两阶固有频率之和时将发生组合参数共振.运用多尺度法,直接求解轴向运动梁的控制方程,导出了稳定性边界方程.最后,通过数值算例给出了变速轴向运动梁的黏阻尼和干扰拉力对失稳区域的影响结果.

  • 标签: 轴向变速梁 黏弹性 拉力扰动 参数共振 稳定性
  • 简介:基于Poincaré映射方法对一类两自由度碰撞系统进行研究.经过详细的理论演算得到单碰周期1/n的亚谐周期运动的存在性判据,并能精确地找到亚谐周期运动的初始位置.表明碰振系统的周期运动研究可以通过解析与数值方法的结合去实现.数值模拟表明了亚谐周期运动的存在性判据的正确性,并通过计算Jacobi矩阵的特征值可判断周期运动的稳定性及分岔.

  • 标签: 碰撞系统 亚谐运动 POINCARÉ映射 稳定性
  • 简介:以两对边简支另两对边自由的功能梯度材料板为研究对象,首先建立了考虑材料物性参数与温度相关的、在热/机械载荷共同作用下的几何非线性动力学方程,采用渐进摄动法对系统在1:1内共振-主参数共振-1/2亚谐共振情况下的非线性动力学行为进行了摄动分析,得到系统的四自由度平均方程,并对平均方程进行数值计算,分析外激励对系统非线性动力学行为的影响,发现在一定条件下通过改变外激励可以改变系统的运动形式,产生混沌运动.另外,第二阶模态的幅值远比第一阶模态的幅值大,这应该是两阶模态耦合产生内共振的结果,因此,研究该类结构的非线性动力学行为时不应该只考虑一阶模态,而应考虑到前两阶甚至更多阶模态的相互作用,以便于更好地利用或控制其运动形式.

  • 标签: 功能梯度材料板 复合边界条件 混沌运动 内共振
  • 简介:研究了作大范围旋转运动高度和宽度均沿着梁长度方向变化的锥形悬臂梁动力学问题.采用Bezier插值方法对柔性梁的变形场进行描述,考虑柔性梁的纵向拉伸变形和横向弯曲变形,计人由于横向弯曲变形引起的纵向缩短,即非线性耦合项.运用第二类拉格朗日方程推导出作旋转运动锥形梁的动力学方程,并编制了动力学仿真软件,对作旋转运动锥形梁的频率和动力学响应进行研究.结果表明:不同锥形梁截面的动力学响应和系统频率将有明显差异,因此对实际系统合理建模,将能得到更为精确的结果.

  • 标签: 锥形梁 Bezier插值方法 锥度比 固有频率