学科分类
/ 1
4 个结果
  • 简介:行人重识别在视频监控领域是一个非常具有挑战性的问题,不同的摄像头位置角度、光照等因素会使同一行人的图像差异较大.文章提出一种DGD(DomainGuidedDropout)卷积神经网络(CNN)与样本相对距离结合的行人重识别算法:首先,通过卷积神经网络来提取来自多个域的数据中具有一般性及鲁棒性的特征;其次,通过计算各个特征样本之间的相对距离来筛选出更具有一般性及鲁棒性的特征;最后,比较筛选出的特征间的欧氏距离进行重识别.实验结果表明,该算法能够提高行人重识别的效率.

  • 标签: 卷积神经网络 样本相对距离 欧氏距离
  • 简介:行人检测在智能监控、自动驾驶、辅助驾驶、智能机器人等研究领域有着广泛的应用.传统的行人检测方法大多使用滑动窗口遍历图片的方式,导致计算量大,检测速度受到限制.目前基于深度学习的行人检测方法进入了一个快速的发展阶段,但是还存在例如小尺寸行人漏检等很多问题.现提出基于卷积神经网络的多尺度行人检测方法,分析了增加检测层、并联卷积层与改变卷积核尺寸对行人检测性能的影响.在KITTI数据集上的实验结果表明,该方法可以实现较好的行人检测效果.

  • 标签: 卷积神经网络 多尺度行人检测 增加检测层 并联卷积层
  • 简介:行人再识别是视频监控领域的关键问题之一,难点在于不同摄像机中同一行人的图像差异较大.基于行人图像的标识可由图像中的语义属性组合间接表示的假设,现提出使用一种基于深度哈希函数的行人再识别算法.通过卷积神经网络学习得到哈希函数,结合多目标损失函数保证分类的准确和哈希编码的有效,使得相似的图像能够获得相似的哈希编码,最后比较哈希特征间的汉明距离进行再识别.实验结果表明,深度哈希特征能够有效地进行行人再识别,提高了算法的执行效率.

  • 标签: 哈希算法 深度学习 汉明距离
  • 简介:针对在不同的摄像头场景下,光线、摄像头参数的差异较大使得行人重识别困难的问题,提出一种基于距离度量学习的方法进行行人重识别.该方法首先为每一对摄像头学习一个距离度量模型.其次,根据上述因素的影响强度为这些度量模型赋予相应的权值.最后,对度量模型与其相应权值的乘积进行累加与优化,得到最终的距离度量模型.经过在两个公共数据集中进行行人重识别实验,其结果显示所提出的方法能够提高行人重识别的正确率.

  • 标签: 人重识别 距离度量学习 摄像网络 核函数 正则项