学科分类
/ 2
36 个结果
  • 简介:<正>各省、自治区、直辖市及计划单列市、新疆生产建设兵团农业(农林、农牧、农牧渔业)厅(局)、化工厅(局)、供销合作社:除草醚是稻田除草剂,我国从60年代开始生产、使用,到80年代成为使用量最大除草剂品种,对防除我国稻田杂草发挥过积极作用。但是,据国外权威机构研究表明,除草醚对试验动物具有致畸、致突变、致癌作用,多数国家已禁止生产、使用。近几年,我

  • 标签: 积极作用 通知 自治区 除草醚 稻田杂草 新疆生产建设兵团
  • 简介:[目的/意义]针对现有规模化猪场生猪计数需求场景多,人工计数效率低、成本高等问题,提出一种基于改进实例分割深度学习算法微信公众平台区域养殖生猪计数方法.[方法]首先,利用智能手机拍摄养殖场猪只视频,对视频抽帧进一步生成图像数据集.其次,通过改进卷积块注意力模块(Convolutional Block Attention Module,CBAM)中忽略通道与空间相互作用及通道注意力中降维操作带来效率较低问题,提出高效全局注意力模块,并将该模块引入基于回归分析阶段实例分割网络YOLO(You Only Look Once)v8中对获取生猪图像进行分割,构建新识别模型YOLOv8x-Ours,以实现高精度生猪计数.最后,基于微信公众平台开发微信小程序,并嵌入综合表现最优生猪计数模型,实现使用智能手机拍摄图像进行生猪快速计数.[结果讨论]在测试集上试验结果表明,与现有实例分割模型..

  • 标签: 生猪计数深度学习微信小程序YOLOv8实例分割
  • 简介:<正>为加强农药管理,逐步削减高毒农药使用,保护人民生命安全健康,增强我国农产品市场竞争力,经全国农药登记评审委员会审议,我部决定撤销甲胺磷等5种高毒农药混配制剂登记,撤销丁酰肼在花生上登记,强化杀鼠剂管理。现将有关事项公告如下:一、撤销甲胺磷等5种高毒有机磷农药混配制剂登记。自2003年12月31日起,撤销所有含甲胺磷、对硫磷、甲基对硫磷、久效磷磷胺5种高毒有机磷农药混配制剂登记(具体名单由农业部农药检定所公布)。自公告之日起,不再批准含以上5种高毒有机磷农药混配制剂临时登记有效期超过4年单剂续展登记。自2004年6月30日起,不得在市场上销售含以上5种高毒有机磷农药混配制剂。二、撤销丁酰肼在花生上登记。自公告之日起,撤销丁酰肼(比久)在花生上登记,不得在花生上使用含丁酰肼(比久)农药产品。相关农药生产企业在2003年6月1日前到农业部农药检定所换取农药临时登记证。三、自2003年6月1日起,停止批准杀鼠剂分装登记,已批准杀鼠剂分装登记不再批准续展登记。

  • 标签: 产品登记 高毒有机磷 分装登记 续展登记 农药检定所 农药生产企业
  • 简介:<正>各省、自治区、直辖市及计划单列市农业(农牧渔业、农林、农牧)厅(局):茶叶是我国人民重要生活资料,同时又是出口创汇主要农产品。氰戊菊酯于80年代普遍用于茶叶生产中防治害虫,由于其乳油含量用药量高,在茶叶中残留量明显高于其它菊酯类农药,大量茶叶样品检测结果表明,氰戊菊酯成为我国茶叶中残留检出率超标率最高农药之一。目前,一些发达国家和地区对茶叶中农药残留限量规定得非

  • 标签: 氰戊菊酯 农药残留限量 茶叶样 茶树 超标率 用药量
  • 简介:<正>各省、自治区、直辖市及计划单列市农业(农牧渔业、农林、农牧)厅(局),海关总署广东分署、各直属海关:为贯彻实施《农药管理条例》,切实履行联合国粮农组织环境规划署关于《在国际贸易中对某些危险化学品农药实行事先知情同意程序国际公约》(PIC),保护生态环境人民健康,农业部海关总署决定在我国对进出口农药实施登记证明管理。现将有关事项通知如下:

  • 标签: 进出口 证明管 农药 事先知情同意 登记 海关总署
  • 简介:摘要 : 溶解氧含量测量对水产养殖具有极其重要意义,但目前中国市面上溶解氧传感器存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广发挥作用。研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差关系进行低成本、易维护溶解氧传感器研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以 STM32F103微处理器作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换( FFT)计算激发光与参照光相位差,进而转化为溶解氧浓度,实现溶解氧测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感器探测头拆卸、更换、维护以及实现远距离在线测量。经测试,溶解氧传感器测量范围是 0~20 mg/L,响应延迟小于 2 s,溶氧敏感膜使用寿命约 1年,可以实时不间断地对溶解氧浓度进行测量。同时,传感器具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感器研发与市场化奠定了良好基础。

  • 标签: 溶解氧传感器 荧光淬灭 水产养殖 STM32微处理器 溶氧敏感膜
  • 简介:<正>各省、自治区、直辖市农业(农牧渔业、农林、农牧)厅(局):为了贯彻实施《农药管理条例》《农药管理条例实施办法》(以下简称《实施办法》),进一步做好农药登记管理工作,现将有关事项通知如下:一、加强农药登记试验管理农药登记试验报告准确性科学性,是做好农药登记管理工作重要保证。为了提

  • 标签: 试验样品 通知 管理工作 自治区 农药 生产厂家
  • 简介:摘要 : 光是植物进行光合作用主要能量来源,光照好坏直接影响作物产量品质。研究针对现有植物补光系统多以功能叶光合能力为基准进行冠层补光,导致冠层新生叶光抑制、株间功能叶位补光不足以及补光位置不能适应作物生长进行动态调整问题,以黄瓜为研究对象,设计了一种基于植株需光差异特性设施黄瓜立体光环境智能调控系统。该系统由智能控制子系统、冠层 -株间 LED补光子系统、冠层 -株间环境监测子系统补光灯升降子系统组成,通过 ZigBee技术实现各子系统间无线通信。其中冠层 -株间环境监测子系统分别获取冠层株间环境信息并发送至智能控制子系统,智能控制子系统根据环境实时信息调用冠层调控模型株间适宜叶位调控模型获得相应调控目标值,并将其下发至冠层 -株间补光灯,实现冠层与株间补光灯动态实时调控。在陕西省泾阳县蔬菜产业综合服务区蔬菜基地分别部署立体补光设备传统冠层补光设备,并进行系统调控效果验证试验。结果表明,立体补光区黄瓜植株株高茎粗显著增长,其中相比传统冠层补光区平均株高、茎粗分别增长了 8.03% 7.24%,相比自然处理区平均株高、茎粗分别增长了 26.51% 36.03%;在一个月采摘期内,立体补光区相比传统冠层补光区自然处理区产量分别提升了 0.28 1.39 kg/m2,经济效益分别增加了 2.82 4.88 CNY/m2,说明立体光环境调控系统能够提高经济效益,具有应用推广价值。

  • 标签: 设施光环境 ZigBee 黄瓜叶位 立体补光 智能调控 PWM
  • 简介:摘要 : 植被分类是高光谱影像分类中特定应用问题,光谱特征空间特征是植被分类中常用两类特征,比较这两类特征性能,对实际植被分类应用中选择合适特征类型或两者有效结合具有指导意义。用主成分分析( PCA)提取光谱特征时,常选择前几个主成分( PCs)作为光谱特征,虽然它们包含较大信息量但并不能保证较高类别可分性分类正确率,针对这一问题研究提出了一种混合特征提取方法,对高光谱影像在 PCA基础上用改进基于分散矩阵特征选择方法选出具有较高类别可分性 PCs用于后续分类。利用一景 AVIRIS高光谱植被影像,从分类精度角度,首先比较了所提出混合特征提取方法原始 PCA、独立主成分分析( ICA)及线性判别分析( LDA) 3种常用子空间特征提取方法在高光谱影像植被分类中性能。试验结果表明所提出混合特征提取方法在研究中数据集 1 2上均获得了最高总体分类正确率,分别为 82.7% 86.5%。与原始 PCA相比,研究提出混合特征提取方法总体分类正确率,在数据集 1 2上分别提高了 1.5% 2.5%。由此阐明了所提出混合特征提取方法在高光谱植被分类中有效性。对光谱特征空间特征在高光谱影像植被分类性能比较中,总体上空间特征获得分类正确率比光谱特征高,特别是 Gabor特征,在两个数据集上均获得了最高总体分类正确率分别为 95.5% 96.7%。由此表明空间特征较光谱特征在高光谱影像植被分类中更具优势。研究结果为后续改进空 -谱特征方法及其两者有效结合,进一步提高植被分类正确率提供了参考。

  • 标签: 高光谱影像 植被分类 光谱特征 空间特征 混合特征提取方法 分散矩阵 主成分分析
  • 简介:摘要 : 为提高现有苹果目标检测模型在硬件资源受限制条件下性能适应性,实现在保持较高检测精度同时,减轻模型计算量,降低检测耗时,减少模型计算存储资源占用目的,研究通过改进轻量级 MobileNetV3网络,结合关键点预测目标检测网络( CenterNet),构建了用于苹果检测轻量级无锚点深度学习网络模型( M-CenterNet),并通过与 CenterNet单次多重检测器( Single Shot Multibox Detector, SSD)网络比较了模型检测精度、模型容量运行速度等方面的综合性能。对模型测试结果表明,研究模型平均精度、误检率漏检率分别为 88.9%、 10.9% 5.8%;模型体积帧率分别为 14.2MB 8.1fps;在不同光照方向、不同远近距离、不同受遮挡程度不同果实数量等条件下有较好果实检测效果适应能力。在检测精度相当情况下,所提网络模型体积仅为 CenterNet网络 1/4;相比于 SSD网络,所提网络模型 AP提升了 3.9%,模型体积降低了 84.3%;网络模型在 CPU环境中运行速度比 CenterNet SSD网络提高了近 1倍。研究结果可为非结构环境下果园作业平台轻量化果实目标检测模型研究提供新思路。

  • 标签: 机器视觉 深度学习 轻量级网络 无锚点 苹果检测
  • 简介:摘要 : 水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥核心要素。研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合 PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数构造方法形式,利用相关性分析、连续投影法、遗传算法优化粗糙集属性简约法进行高光谱特征选择,提出了仅含有 695、 507 465nm 3个高光谱特征波段红边优化指数( ORVI)。与 Index Data Base数据库中其他用于叶绿素含量反演植被指数,包括 ND528,587、 SR440,690、 CARI、 MCARI反演结果进行了对比分析,结果表明: IDB数据库中已有 4种植被指数叶绿素含量反演模型决定系数 R2别为 0.672、 0.630、 0.595 0.574; ORVI植被所建立叶绿素含量反演模型决定系数 R2为 0.726,均方根误差 RMSE为 2.68,精度高于其他植被指数,说明了 ORVI在实际应用中,能够作为快速反演水稻叶绿素含量高光谱植被指数。研究能够为寒地水稻叶绿素含量高光谱遥感诊断及管理决策提供一定客观数据支撑模型参考。

  • 标签: 植被指数 叶绿素反演 水稻叶片 高光谱遥感 红边优化指数 ORVI
  • 简介:摘要 : 叶片湿润时间( LWD)是植物病害模型重要输入变量之一,它与许多叶部病原菌侵染有关,影响病原侵染发育速率。为了准确地预测日光温室黄瓜病害发生时间方位,研究于 2019年 3月 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室试验条件下获得了相似的准确度( ACC为 0.90 0.92),比相对湿度经验模型估算叶片湿润时间准确度( ACC为 0.82 0.84)更高,平均绝对误差 MAE分别为 1.81 1.61 h,均方根误差 RSME分别为 2.10 1.87,决定系数 R2别为 0.87 0.85;在晴天和多云天气条件下,叶片湿润时间空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长区域;由东向西方向上,叶片湿润时间空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短区域;雨天叶片湿润平均时间比晴天和多云长,春季秋季分别为 17.15 17.41 h/d。这些变化差异对温室黄瓜种群水平方向叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害发生规律密切相关。研究为预测温室黄瓜病害分布提供了有价值参考,对控制病害流行减少农药使用具有重要意义,提出区域化分析温室内叶片湿润时间方法,可以为模拟日光温室叶片湿润时间空间分布提供参考。

  • 标签: 日光温室 估算模型 区域化 叶片湿润时间 BP神经网络 传感器
  • 简介:摘要 : 受经济和气候驱动,长江经济带水田空间格局发生了显著变化,影响区域粮食安全与生态安全。研究基于 1990-2015年土地利用遥感监测数据,利用 GIS空间分析功能,探究长江经济带水田空间格局动态变化特征,采用当量因子法计算生态系统服务价值( ESV),分析了水田变化综合影响。结果表明: 1) 1990-2015年长江经济带水田规模持续缩减,共减少了 17390km2,减幅呈增长态势具有显著地域差异,长江中上游与下游水田减幅相差约为 9.56%。其中下游减幅较大,水田占区域比例随之降低,中上游恰好相反。 2)由于经济建设及水产养殖发展,水田主要转化为建设用地水系,水田主要由水系、旱地湿地等转化而来。长江三角洲城市群、长江中游及成渝城市群水田变化最为剧烈,建设用地侵占水田扩张现象分布广泛,水田转为水系主要在两湖平原局部地区。 3)水田与其他生态系统转化对 ESV是正影响,水田转为水系对此贡献最大,其转化规模决定了不同时期 ESV净增量大小,水系转化为水田损失价值最多,建设用地侵占水田次之。不同市域水田变化情况不一致,因此 ESV增减情况具有明显差异。 4)生态系统服务中水文调节、水资源供给增强同时,食物生产、气体调节受到严重损害,与水资源规模扩大和水田资源大量流失有直接关系。研究结果有助于揭示长江流域水田时空变化过程及其对各项生态系统服务影响,可为区域土地利用规划、农业政策与生态可持续发展提供理论支持。

  • 标签: 水田 生态系统服务价值 长江经济带 权衡协同 时空变化 遥感数据
  • 简介:摘要 : 含水量是表征水稻生理健康状况关键参数,精确预测水稻含水量对于水稻育种大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长研究主要集中在利用植被指数评估作物在单一或者几个生育期生长参数,针对作物含水量监测研究非常有限。研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层 RGB图像多光谱图像,通过提取植被指数纹理特征,分析水稻动态生长变化,并构建了基于随机森林回归方法含水量预测模型。试验结果表明:( 1)从无人机图像提取植被指数、纹理特征以及地面测量含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;( 2)与 RGB图像相比,多光谱图像评估水稻含水量具有更高潜力,其中归一化光谱指数 NDSI771,611实现了更好预测精度( R2=0.68, RMSEP=0.039, rRMSE =5.24%);( 3)融合植被指数纹理特征能够进一步改善含水量预测结果( R2=0.86, RMSEP=0.026, rRMSE=3.51%),预测误差 RMSEP分别减小了 16.13% 18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行,可为农田精准灌溉和田间管理决策提供新思路。

  • 标签: 无人机低空遥感 水稻含水量 RGB图像 多光谱图像 植被指数 纹理特征 特征融合
  • 简介:[目的/意义]天然牧场下放牧牲畜数量准确检测是规模化养殖场改造升级关键.为满足规模化养殖场对大批羊群实现精准实时检测需求,提出一种高精度、易部署小目标检测模型CSD-YOLOv8s(CBAM SP-PFCSPC DSConv-YOLOv8s),实现无人机高空视角下小目标羊只个体实时检测.[方法]首先,使用无人机获取天然草原牧场中包含不同背景及光照条件下羊群视频数据并与下载部分公开数据集共同构成原始图像数据.通过数据清洗标注整理生成羊群检测数据集.其次,为解决羊群密集相互遮挡造成羊只检测困难问题,基于YOLO(You Only Look Once)v8模型构建具有阶段局部连接SPPFCSPC(Spatial Pyramid Pooling Fast-CSPC)模块,提升网络特征提取特征融合能力,增强模型对小目标羊只检测性能.在模型Neck部分引入了卷积注意力模块(Convolutional Blo...

  • 标签: 羊只检测YOLOv8小目标SPPFCSPC注意力机制深度可分离卷积
  • 作者: 刘守阳 1 2 3* 金时超 5 6 郭庆华 5 6 朱艳 4 Fred Baret1 2 3*
  • 学科: 农业科学 > 农业基础科学
  • 创建时间:2020-06-02
  • 出处:《智慧农业(中英文)》 2020年第1期
  • 机构:1.南京农业大学作物表型组学交叉研究中心,江苏南京 210095; 2.法国农业和环境科学研究院 CAPTE实验室,阿维尼翁 210095,法国; 3.南京农业大学江苏省现代作物生产协同创新中心,江苏南京 210095; 4.南京农业大学国家信息农业工程技术中心 /教育部智慧农业工程研究中心,江苏南京 210095; 5.中国科学院植物研究所植被与环境变化国家重点实验室,北京 100093; 6.中国科学院大学,北京 100049
  • 简介:摘要 : 冠层光截获能力是反映作物品种间差异重要功能性状,高通量表型冠层光截获对提高作物改良效率具有重要意义研究以小麦为研究目标,利用数字化植物表型平台( D3P)模拟生成了 100种冠层结构不同小麦品种在 5个生育期三维冠层场景,记录了从原始冠层结构中提取绿色叶面积指数( GAI)、平均倾角( AIA)散射光截获率( FIPARdif)信息作为真实值 ,进一步利用上述三维小麦场景开展了虚拟激光雷达( LiDAR)模拟实验,生成了对应三维点云数据。基于模拟点云数据提取了其高度位数特征( H)绿色分数特征( GF)。最后,利用人工神经网络( ANN)算法分别构建了从不同 LiDAR点云特征( H、 GF H+GF)输入到 FIPARdif、 GAI AIA反演模型。结果表明,对于 GAI、 AIA FIPARdif,预测精度从高到低对应点云特征输入为 GF+H > H > GF。由此可见, H特征对提高目标表型特性估算精度起到了重要作用。输入 GF + H特征,在中等测量噪音( 10%)情况下, FIPARdif GAI估算均获得了满意精度, R2别为 0.95 0.98,而 AIA估算精度( R2=0.20)还有待进一步提升。研究基于 D3P模拟数据开展,算法实际表现还有待通过田间数据进一步验证。尽管如此,研究验证了 D3P协助表型算法开发能力,展示了高通量 LiDAR数据在估算田间冠层光截获冠层结构方面的较高潜力。

  • 标签: 冠层光截获 高通量表型 LiDAR 数字化植物表型平台( D3P) 小麦冠层