简介:一、填空题(每小题4分,共32分)1方程3y2=24的根为;方程x-x28=0的根为.2方程13x=1-5x2的两根之和是,两根之积是3当t时,分式t2+2t-3|t|-3的值为零4当p时,分式方程xx-3=p2x-3+2会产生增根5应用求根公式计算方程ax2+bx+c=0(a≠0)的二根x1与x2的差的绝对值可得|x1-x2|=.6代数式1999x-1998与1998-1999x的值相等,则x=.7方程(2x-1)2+2(1-2x)-3=0的解为;方程组x+y=11xy=-12的解为8方程x+5x+10=8的解是二、单项选择题(每小题5分,共30分)9下列结论正确
简介:第一类弱奇异核Fredholm积分方程由于奇异及本质的不适定性,给求解带来很大难度.本文首先利用克雷斯变换将方程转化,并对转化后的方程进行高斯一勒让德离散,得到一离散不适定的线性方程组,结合正则化方法对该类问题进行数值求解.最后给出了数值模拟,验证了本文方法的可行性及有效性.
简介:基于解的充分必要条件,提出一类广义变分不等式问题的神经网络模型.通过构造Lyapunov函数,在适当的条件下证明了新模型是Lyapunov稳定的,并且全局收敛和指数收敛于原问题的解.数值试验表明,该神经网络模型是有效的和可行的.
简介:给出了Banach空间中线性离散时间系统一致与非一致多项式膨胀性的概念,使其在相应空间中范数的增长速度不快于指数型增长,并用实例阐释了二者的关系.借助于指数型膨胀性的研究方法,讨论了其非一致多项式膨胀性的离散特征.作为应用,利用Lyapunov函数给出了相应概念的充要条件.得到了指数膨胀性理论中一些经典结论在非一致多项式膨胀情形下的变形.
简介:引入一类Lupas-Baskakov积分算子,给出它对有界变差函数的点态逼近度,并指出精确的逼近阶。
简介:利用Mawhin的重合度理论,研究了一类具时滞的Liénard型方程的周期解的存在性,并举例说明了其应用.