简介:煤层气的商业性开采在阿巴拉契亚(Appalachian)盆地北部开始于上世纪30年代,而在圣胡安(SanJuan)盆地开始于50年代初。然而,直到70年代和80年代初经美国矿务局、美国能源部、天然气研究所和油气作业者共同努力,证明可用垂直井对煤层气进行商业性开采时才认识到煤层气资源的重要性和经济意义。勘探和开发工作在80年代末和90年代初得以扩展,部分是由于非常规燃料的税收减免法。到2000年,煤层气已占美国干气储量(15.7万亿立方英尺[4400亿m^3])的8.8%和年产量(1.38万亿立方英尺[400亿m^3)的9.2%。从1989到2000年,美国煤层气的累积产量为9.63万亿立方英尺(2720亿m^3)。目前,煤层气的开发已扩展到美国12个盆地左右,而勘探工作则发展到全世界。煤层是自生自储的气藏,它们可含有热成因气、运移来的热成因气、生物成因气或混合气。煤层气主要呈吸附状态储集在煤基质的微孔隙中,其次呈游离气储集在微孔隙和裂缝中,或者呈水中的溶解气。控制气资源量和生产能力的主要参数是热成熟度、显微组分组成、气含量、煤层厚度、裂缝密度、地层应力、渗透率、埋藏史和水文环境。这些参数在美国和世界的生产气田中有很大差异。在2000年,圣胡安盆地占美国煤层气产量的80%以上。这个盆地有个巨大的煤层气成藏层发育区,即弗鲁特兰富集区带(FruitIandfairway),它已采出7万亿立方英尺(2000亿m^3)以上的气。弗鲁特兰煤层含气系统及其基本要素和保德河(PowderRiver)盆地的尤宁堡(FortUnion)煤层气成藏层形成显明对比。尤宁堡煤层气成藏层是美国开发最快的天然气成藏层之一,其产量由1997年的140亿立方英尺(4亿m^3)迅速增加到2000年的1473亿立方英尺(41亿m^3),占当时美国煤层气产量的10.7%。到2001年,年产量为2447亿立方英尺(69亿m^3)。
简介:采用总油气系统评价单元的概念和基于网格的连续型(非常规)资源评价方法,评价了得克萨斯州中北部沃思堡盆地密西西比系巴尼特页岩中具有增储潜力的待发现天然气资源量。在本德穹隆-沃思堡盆地,巴尼特-古生界总油气系统的定义包含了作为古生界碳酸盐岩和碎屑岩油气藏主要烃源岩的富含有机质巴尼特页岩的分布区。近些年,巴尼特页岩成藏层带的勘探、技术服务及钻井活动迅猛发展,到2005年底,已完成了大约3500口直井和1000口水平井,其中85%以上的井都是在1999年以后完成的。利用在向水平井完成过渡前直井完井高峰期巴尼特气藏的历史生产数据和地质资料,美国地质调查所对巴尼特页岩气进行了评价。开展评价工作前完成了下列工作:(1)测绘关键的地质与地球化学参数,确定具有增储潜力的评价单元的面积;(2)确定供油气面积(网格大小)的分布和估算每个网格的最终开采量;(3)估算未来的成功率。把连续型巴尼特页岩气藏划分为两个单元并分别进行了评价,得出有增储潜力的待发现天然气资源总量为26.2万亿立方英尺。大纽瓦克东裂缝遮挡连续型巴尼特页岩气评价单元代表着核心产气区域,这里厚层、富含有机质的硅质巴尼特页岩处在生气窗内(Ro≥1.19/6),上覆与下伏均为非渗透的灰岩地层(分别是宾夕法尼亚系马布尔福尔斯灰岩地层和奥陶系韦厄拉灰岩地层),这两套地层在完井期间会限制诱发裂缝的发展,从而最大限度提高天然气开采量。扩展的连续型巴尼特页岩气评价单元的勘探程度比较低,这里巴尼特页岩:(1)位于热生气窗内;(2)层厚大于100英尺(30米);(3)至少缺少一个非渗透的灰岩遮挡层。大纽瓦克东评价单元内,具有增储潜力的待发现天然气资源量平均值为14.6万亿�
简介:西西伯利亚盆地中部上侏罗统巴热诺夫(Bazhenov)层为一典型的海相黑色页岩单元,含有大量的Ⅱ型干酪根,具有很高的生油潜力。在西西伯利亚盆地中,90%的石油来源于这些页岩。在这些页岩中存在非常规自生自储式油藏。储层发育带一般较小,并沿断层面分布。石油的初次运移主要沿邻近断裂带的裂缝网络进行。Bazhenov层中的石油的聚集作用发生于第三纪,该层中石油的生成和排出作用导致形成超压。在位于盆地中部的Surgut和Nyalinsk区域性大背斜之间的研究区内,断裂和破裂作用发生于始新世到第四纪。断裂作用导致Bazhenov层中有机质的热成熟度局部增加。Bazhenov层中自生自储式油藏勘探风险主要与用地震勘探方法确定的区域断层或横断层有关。
简介:摘要作为非生物有机合成的场所和最早微生物群落的栖息地,以蛇纹岩为母岩的热液系统(简称蛇纹岩热液系统)获得了相当大的关注。本文要报道对一个斯的蛇纹岩热液系统的一系列同位素研究,它就是位于日本白马岳地区的白马八方温采(北纬36°42′,东经137°48′)。我们从该温泉的两口井中采集了水样,所有水样呈强碱性而且都富含H2(201-664μmol/L)和CH4(124-201μmol/L)。虽然温度较低(50-60℃),但热力学计算表明H2有可能通过蛇纹石化反应产生。已发现八方1号井和八方3号井具有以下氢同位素成分:δD-H2=-700‰和-710‰,δD-CH4=-210‰和-300‰,δD-H2O=-85‰和-84‰。八方1号井和八方3号井甲烷的碳同位素成分分别是δ13C=-34.5‰和-33.9‰。这-CH2-H2-H2O氢同位素系列表明至少有两种不同的机理与甲烷生成有关。八方1号井的氢同位素组成与前人报道的其他蛇纹岩热液系统的相似。重的δD-CH4(相对于同位素分馏平衡关系)说明八方1号井甲烷中的氢不是来自分子态氢,而是直接来自水。这意味着这些甲烷不可能通过费-托式(FTT)合成而产生,而可能通过橄榄石的水合反应生成。相反,八方3号井很轻的δD-CH4(相对于同位素分馏平衡关系)表明有生物甲烷混入。根据氢同位素系列与其他蛇纹岩热液系统的对比,直接由水生成无机CH4(不存在中间产物H2)可能在蛇纹岩热液系统更为常见。橄榄石的水合反应对于无机甲烷的产生可能有比以前想象的更重要的作用。