学科分类
/ 24
468 个结果
  • 简介:考虑具有可控增长条件的非线性椭圆方程组弱解的部分正则.利用Duzaar和Grotowski引进的弱解部分正则证明的新方法,该方法是建立在调和逼近技巧一般形式的基础上的,我们把前人的结果由自然增长条件推广到了可控增长条件,并且所得到的弱解导数的Hoelder指标是最优的.

  • 标签: 非线性椭圆方程组 可控增长条件 调和逼近技巧 最优部分正则性
  • 简介:利用能量方法和单元正交分析方法,构造了特殊的Radau型单元正交展开和张量积分解,简明论证了一阶双曲方程组时空间断有限元的收敛,得到了丰满阶的整体误差估计.数值实验证实了这些理论结果.

  • 标签: 全离散有限元 双曲型方程组 收敛性 时空 一阶 间断有限元
  • 简介:利用重合度理论,研究了一类具多偏差变元高阶中立型泛函微分方程的周期解,获得这类方程至少存在和至多存在一个T一周期解的充分条件,其中周期解的先验界估计与方程的滞量有关.文中的主要结果改进和推广了相关文献的主要定理.

  • 标签: 高阶中立型微分方程 周期解 存在性和唯一性 重合度
  • 简介:通过建立比较定理,利用半序与上下解方法,在Banach空间研究了源弹性梁的—类四阶常微分方程两点边值问题的最大解与最小解的存在

  • 标签: 四阶常微分方程 边值问题 上下解方法
  • 简介:在一致凸Banach空间上,研究了半紧的非扩张压缩映象||Tx-Ty||≤||x-y||的Ishikawa型的三重迭代序列的收敛性问题,建立并证明了带误差的Ishikawa三重迭代逼近收敛定理,从而独特的推广了Mann和Ishikawa迭代方法,改进和发展了文献[1]-[7]的主要结果.

  • 标签: 一致凸BANACH空间 半紧的非扩张映射 Ishikawa型的三重迭代序列 不动点