简介:非局部均值滤波是一种基于图像信息冗余的去噪方法,其认为图像自身的有效结构具有一定的重复性,而随机噪声则不具备这一特点,通过利用图像本身的自相似性来达到压制随机噪声的目的,是一种全局的去噪方法。本文把这一思想引入地震数据随机噪声压制中,针对传统非局部均值滤波计算量过大的问题,文章采用分块非局部均值的方式来减少计算量;针对滤波参数选取会影响非局部均值滤波效果的问题,提出一种简单的自适应滤波参数地震数据分块非局部均值算法。模型和实际数据处理结果表明:相对于传统的去噪算法(如f-x反褶积),该方法在压制随机噪声的同时对有效信号保护地更好,具有更高的保真度,更有利于后续的处理和解释工作。
简介:由于地震数据中包含的噪声在不同频率或者频带数据中的分布强度存在差异,使得全频带数据上进行的噪声衰减处理改变了地震反射波信号的动力学特征,干扰后期的地震资料解释、储层预测、油气检测等问题,提出边界和振幅特性保持自适应噪声衰减方法。首先应用小波包变换对全频带地震数据进行多频段划分,然后对分频段数据进行非线性各向异性倾角导向边界保持自适应滤波处理。在该方法中,由结构张量计算的扩散张量实现自适应地确定平滑滤波方向,加入的不连续结构置信度量和不连续性算子自适应地控制不连续结构特征的保持程度,引入的去相关滤波迭代停止准则自适应地确定滤波迭代次数。这些参数的引入具有减少处理人员的干预和人为的主观性,且执行简单的特点。对合成地震记录和实际地震记录处理结果表明,提议的方法能够自适应地衰减地震数据中噪声,同时既能保持地震反射波中有效的不连续性信息,也能有效地保持有效信号的频率分布规律。能够为后期的地震资料解释和分析提供高品质的基础数据。
简介:噪声衰减是探地雷达信号处理中的关键问题之一。当探测目标埋藏深度比较浅时,其反射信号与直耦信号和地面回波信号相互重叠,直接影响目标反射波到达时刻的检测及目标的正确定位。针对这个问题,本文提出了一种基于Curvelet变换的噪声衰减方法。通过对理论数值模拟数据和实测数据的处理,以及与平均消去法和二维连续小波该方法处理结果的对比,验证了该方法的可行性和有效性。处理结果显示,该方法不仅可以去除背景噪声、同时可以衰减倾斜相关的相干干扰和数据中的随机噪声。与二维连续小波变换方法相比有更高的计算效率。
简介:海洋地震勘探过程中,由于采集设备的老化或电源的不稳定而造成的漏电,在地震记录表现为强噪音干扰,利用常规噪音衰减方法处理此类强噪音效果并不理想。鉴于强噪音在统计学上具有相同的特性,本文在基于峰度的盲分离(blindsourceseparation,BSS)算法研究基础上,推导出一种基于多用户峰度(multiuserkurtosis,MUK)准则的噪音衰减算法来估计地震记录中具有相同统计特性的强噪音,并将其从地震记录中分离,从而达到衰减强噪音的目的。模型试验与实际资料的处理表明:该方法能够在好的衰减海洋地震勘探记录中的强噪音,保留了更多的有效信息,提高海洋地震数据的信噪比,具有可行性和应用前景。
简介:噪声衰减是探地雷达信号处理中的关键问题之一。当探测目标埋藏深度比较浅时,其反射信号与直耦信号和地面回波信号相互重叠,直接影响目标反射波到达时刻的检测及目标的正确定位。针对这个问题,本文提出了一种基于Curvelet变换的噪声衰减方法。通过对理论数值模拟数据和实测数据的处理,以及与平均消去法和二维连续小波该方法处理结果的对比,验证了该方法的可行性和有效性。处理结果显示,该方法不仅可以去除背景噪声、同时可以衰减倾斜相关的相干干扰和数据中的随机噪声。与二维连续小波变换方法相比有更高的计算效率。更多还原
简介:由于地震数据中包含的噪声在不同频率或者频带数据中的分布强度存在差异,使得全频带数据上进行的噪声衰减处理改变了地震反射波信号的动力学特征,干扰后期的地震资料解释、储层预测、油气检测等问题,提出边界和振幅特性保持自适应噪声衰减方法。首先应用小波包变换对全频带地震数据进行多频段划分,然后对分频段数据进行非线性各向异性倾角导向边界保持自适应滤波处理。在该方法中,由结构张量计算的扩散张量实现自适应地确定平滑滤波方向,加入的不连续结构置信度量和不连续性算子自适应地控制不连续结构特征的保持程度,引入的去相关滤波迭代停止准则自适应地确定滤波迭代次数。这些参数的引入具有减少处理人员的干预和人为的主观性,且执行简单的特点。对合成地震记录和实际地震记录处理结果表明,提议的方法能够自适应地衰减地震数据中噪声,同时既能保持地震反射波中有效的不连续性信息,也能有效地保持有效信号的频率分布规律。能够为后期的地震资料解释和分析提供高品质的基础数据。
简介:常规的时间一空间域和频率一空间域预测滤波方法假设地震记录由地震信号和随机噪声两部分构成,即所谓的加噪声模型,但是,在对随机噪声进行估算时,又假设随机噪声可以通过预测误差滤波器由地震记录中进行预测,即所谓的源噪声模型。这种前后不一致的噪声模型降低了该类方法的去噪能力和保幅性能。为此,本文提出了一种基于反演的时空域随机噪声衰减方法。它首先从地震数据中估算预测滤波算子,该算子表征了地震信号的可预测性,自适应地描述了地震信号的空间结构。在得到预测误差算子之后,将该算子作为正则化约束引入到地震信号反演系统,由含有随机噪声的地震数据直接反演地震信号。不同于常规随机噪声衰减方法,该方法将随机噪声衰减问题归结为正则化约束下的地震信号反演问题,克服了常规方法噪声模型的不一致性问题。我们采用模型数据和实际数据进行了实验分析,并与常规方法进行了效果对比。实验结果表明:与常规方法相比,本文方法在噪声压制的同时,没有对有效信号产生明显伤害,具有更好的振幅保持能力。
简介:传统的f-x域经验模态分解法(Empiricalmodedecomposition,EMD)能够有效地对主要由水平同相轴构成的地震记录进行随机噪声衰减。然而,当同相轴倾斜时,f-x域经验模态分解法在衰减随机噪声的同时去除大部分有效信号。本文提出了一种基于f-x域经验模态分解法的改进算法。我们通过局部相似度对所去除的噪声信号中的有效信号进行提取。局部相似度可以用来检测噪声信号中的有效信号点并用来构造一权重算子进行信号提取。新方法与f-x域经验模态分解法、f-x域预测滤波法以及f-x域经验模态分解预测滤波法相比能够在衰减随机噪声的同时保留更多的有用信号。数值模拟实验以及实际地震资料处理结果均表明该方法能更为有效地去噪。