简介:摘要本文主要针对公路工程检测数据自动化处理进行分析,思考了公路工程检测数据自动化处理的具体的方法和处理的关键点和要点,提出了一些比较可行的措施和建议,希望可以为今后的公路工程检测数据自动化处理工作提供参考。
简介:为解决马铃薯图片的分类检测问题,提出了基于卷积神经网络的图像分类方法.利用卷积神经网络自动学习图像特征的优势解决马铃薯图像的分类问题,分别研究了基于ResNet、DenseNet和CaffeNet的神经网络模型图像分类方法,比较了不同分类方法的准确率,同时利用可视化工具提取网络中的特征图,结合测试结果对网络模型进行调整,降低图像分类的错误率,并且针对样本容量较小时易造成网络模型过拟合的缺点,采用留一法和其他方法来处理样本图片,以提高训练的网络精度.该次研究中训练的三种神经网络模型正确地对马铃薯图像特征进行了提取,网络的识别准确率较高,达到了生产检测的标准.