学科分类
/ 22
440 个结果
  • 简介:利用Leray-Schauder不动点定理和变分法得到了边值问题正对称解的存在,这里 是IR~N中的环城.

  • 标签: 正对称解 不动点 拟线性椭圆型方程
  • 简介:利用重合度理论研究了一类三阶泛函微分方程x′′′(t)+multiplyfromi=1to2[a_ix~((i))+b_ix~((i))(t-τ_i)]+g_1(x(t))+g_2(x(t-τ))=p(t)的2π-周期解问题,获得了该方程2π-周期解存在唯一的若干新结论.

  • 标签: 三阶泛函微分方程 周期解 重合度
  • 简介:研究了一类具有最大值项和连续变量的非线性二阶中立型时滞差分方程的振动,利用Banach空间的不动点原理和一些不等式技巧,得到了这类方程存在最终正解的充分条件,并得到了该方程振动的一些判别准则.

  • 标签: 振动和非振动 最大值 连续变量 中立型时滞差分方程
  • 简介:通过构建数据科技乌托邦,对火星移民计划的可持续性问题进行探讨。首先,对比火星与地球的异同点,根据移民的生存目标分析火星乌托邦的社会构成,并制定火星移民的选拔标准;其次,对火星乌托邦的人口分布情况运用Leslie人口模型进行动态演化,并基于人口的演化结果分析收入、教育、平等问题;采用生产法确定火星的经济生产总值,并建立双对数线性模型求解四大产业不同学历劳动者的工资增长函数;通过对火星教师数量与教育产出水平指标的评估,借鉴柯布-道格拉斯生产函数分析教育的投入与产出情况,综合考察火星教育的发展状况;再从人格尊严、经济产出、学历教育角度,引用基尼系数全面地评价火星乌托邦的平等问题,以验证火星移民计划的可行与可持续

  • 标签: 火星移民计划 火星乌托邦 柯布-道格拉斯生产函数 基尼系数
  • 简介:利用上下解方法及Schauder不动点定理,证明了二阶非线性微分方程组三点边值问题:{y"=f(t,y,z,y',z')z"=g(t,y,z,y',z')y(-1)=A,y(1)=B,z(0)=C0,z'(0)=C1,解的存在,并由此得到四阶非线性微分方程三点边值问题解的存在,一定程度上推广了前人的一些结果.作为文章结果的应用,讨论了奇摄动四阶半线性三点边值问题,得到该问题解的存在及解的渐近估计.

  • 标签: 上下解 SCHAUDER不动点定理 二阶方程组 三点边值问题
  • 简介:以Schauder-Tychonoff不动点定理为工具,应用上、下解得方法,建立一类高维非线性椭圆型方程△u=f(x,▽u)uβ,(x∈Rn,n≥3,0〈β〈1)正整解的存在和性质的定理,所得的结果丰富和发展了Kawano等和许兴业的结果.

  • 标签: 椭圆型方程 正整解 上解 下解 连续映照 不动点定理
  • 简介:本文应用中立型时超不等式解振动的判别准则和变换技巧,研究了一类n维中立型非线性时超微分方程组{d/dt[Xi-c(t)Xi(t+r)]+∑k=1^m1∑j=1^naij^k(t)Xj(t+τk)-∑s=1^m2∑j=1^nbji^s(t)Xj(t+δs)+bif(σ(t+ηi)))=0σ(t)=∑t=1^nCsxi(t)(i=1,2,…,n)解的振动,获得了其解振动的判别准则。

  • 标签: 非线性时超微分方程组 振动性 中立型 时超不等式 判别准则
  • 简介:利用锥拉伸及锥压缩不动点定理,讨论了Banach空间中一类带奇异性的脉冲积-微分混合方程边值问题多个正解的存在.

  • 标签: 奇异边值问题 正解
  • 简介:利用非线性增生映射值域的扰动定理,研究了非线性椭圆边值问题(@)在Ls(Ω),p≤s<+∞中解的存在.(@){-△pu+g(x,u)=fa.e.在Ω中-∈βr(u(x))a.e.在Γ上其中f∈Ls(Ω),p≤s<+∞给定,ΩRN为有界锥形区域,△pμ=div(|u|p-2u)为P拉普拉斯算子.max(N,2)≤p<+∞,v为Γ的外法向导数,g:Ω×R→R满足Caratheodory条件,对x∈Γ,βx是正常、凸、下半连续函数φx=φ(x,@)的次微分.其中φ:Γ×R→R.本文推广了魏利和何震所讨论的非线性问题的边值条件.

  • 标签: 增生映射 半连续映射 非线性椭圆边值问题