简介:根据天然气类型和含气系统特征能够可以区分页岩气资源的成藏层带。得克萨斯州沃思堡盆地的纽瓦克东气田就是因低孔、低渗巴尼特页岩产出热成因气而确认的。巴尼特页岩含气系统属于自生自储型含气系统,在主要产气区已经生成了大量天然气,因为它有以下特征和作用过程:1)原始有机质丰度很高和生烃潜力很大;2)干酪根和保留的石油分别发生了一次和二次裂解;3)吸附作用使石油保存下来并裂解成气;4)有机质分解产生了孔隙度;5)独特的矿物成分使地层具有脆性。首先根据生产剖面和经营公司的估算确定了最终采收量,然后在此基础上计算了天然气的总地质储量(GIP),其数值大约是204亿立方英尺/平方英里(5.78×10。立方米/1.73×10^4立方米)。我们估算的巴尼特页岩的总生烃潜力大约为609桶油当量/英亩-英尺或者365.7万立方英尺/英亩-英尺(84.0立方米/立方米)。假定页岩厚度为350英尺(107米),而且含氢量只够一部分保留石油裂解成天然气,那么估算的总生烃潜力为8200亿立方英尺/平方英里。在这些生烃潜力中大约有60%排出源岩,其余则保留了下来,在达到充分的热成熟度时就会发生石油向天然气的二次裂解。在典型的储层压力、体积和温度以及6%的孔隙度条件下,巴尼特页岩储存天然气的能力为540万立方英尺/英亩一英尺或159标准立方英尺/吨。
简介:盆地模拟作为一种定量的油气研究方法必须了解模型的限定因素,这主要是因为这种模拟方法被广泛用于勘探目标的分级和相关地质风险的评价。通常,为了验证模型的有效性,要针对实测资料进行费时(试错法)的校正,对模型进行复杂的修改以满足模型参数之间的高度非线性关系。这些步骤可能导致对模型结果的不合理解释。但是,反演方法可以在考虑已知的不确定性因素的同时,求得一组与校正资料最吻合、又最简单的模型参数。本文介绍了一种1-D确定性正向模型的假反演方法,该方法具有使用方便、快捷的特点。对于镜质体反射率,通过评价不确定性以及所用方法与实测资料的拟合度可以快速评价不同输入参数的变化的意义。本文通过德国华力西Rhenish山丘一个小范围的详细1-D模拟研究中的一组数据对该方法进行了阐述。还评价和讨论了在最大埋藏深度时影响镜质体反射率的两个主要参数--热流值和埋藏深度的意义和不确定性。除了使用真实资料外,还展示了一种理论方法,即用多项式或三次样条插值法近似求得仅有少量数据点的剩余面。分辨率的范围、敏感性和不确定性很容易评价,而且能将剩余面转换成可用于风险评价的假概率密度函数。
简介:页岩气储层岩石物理评价方法包含一些基于矿物分析的工作流程,亦即利用传统核测井、电学与声波测量与先进地球化学测井技术相结合的一些手段。由于这种方法以综合描述矿物学、有机质含量、孔隙体积、流体分布等为目的,它似乎提供了一种最具综合性的非常规气藏岩石物性分析方法。然而,这一方法需要大量输入数据组以及一些关键的模型参数,而人们对这些参数的了解可能并不很好,比如,矿物元素重量百分比端点数据(mineralelementalweightfractionendpoints)。我们预计,由于采用的模型和参数不同,或者由于不能与岩心数据交互验证,经营者与服务公司之间的地化模拟结果会存在差异。而地化模拟的作用须从整个油田范围应用的角度考量,因为人们并不经常收集这类数据。我们讨论在海因斯韦尔气田(得克萨斯州)气井中应用三种解释技术获得的结果,它们与采用粉碎岩样(GRI)方法获取的岩心分析结果作了标定。首先,采用包括标准测井系列和地球化学测井在内的多矿物法的分析结果表明,由两个机构提供的独立岩石物理评价结果与在室内分析得到的岩石物性评价结果彼此不相符。其次,在只有这类测井资料可用的情况下,建议采用电阻率资料并结合两种孔隙度测井资料建立岩石物性模型。这种模型很容易拓展应用到许多有相同测井系列的井中,并可用于水平井。再其次,如果有足够多井的岩心数据,我们可以采用一种聚类分析方法,它能提供适合大区域研究的高质量的资料。我们把每种方法的结果与可用的岩心测量结果进行了对比,并就进一步应用提出了建议。文中还研究了实验室NMR(核磁共振)测量值对描述页岩气藏特征的支撑作用。在“接收时岩心所处状态下”对老岩心进行了实验室NMR测量。岩心的NMR孔隙�
简介:本文介绍了勘探新区默勒和沃灵盆地7个成藏层带风险分析的方法及结果。这些成藏层带代表了不同的深海沉积体系,而且从陆坡上部到盆地底部的整个剖面上均有分布。和典型的新区一样,这两个盆地的钻井资料也很少,其成藏层带模型都是根据地震资料建立的,导致风险评价的定性程度很高,但据此可在这两个盆地中划分低、中、高风险水平的3种成藏层带类型。风险评价的目的有两个,第一是搞清楚各成藏层带内勘探前景较好的储层的厚度分布、结构及净毛比,第二是评价沉积模型的不确定性和现有数据的质量。我们说明了在成藏层带排序过程中,如何评价风险分析对确定有效成藏层带的作用,以及如何通过排序来系统筛选未来的勘探机会。这一研究流程的基础是地质模型的风险分析,因为这种分析是对储层分布、结构以及封盖层等方面的综合地质解释。总之,要对地质模型进行恰当的定性风险评价,其先决条件是认识储层的变化性和沉积特征的范围。成藏层带的风险性由区域风险因素构成,而这些区域风险因素是由区域沉积模型决定的。因资料品质差或资料缺乏而产生的不确定性同样也很重要。把成藏层带风险与因资料缺乏而造成的不确定性区分开,有助于提高决策质量,例如可以在获取勘探区块、购买资料或两者同时进行之间做出选择。
简介:采用总油气系统评价单元的概念和基于网格的连续型(非常规)资源评价方法,评价了得克萨斯州中北部沃思堡盆地密西西比系巴尼特页岩中具有增储潜力的待发现天然气资源量。在本德穹隆-沃思堡盆地,巴尼特-古生界总油气系统的定义包含了作为古生界碳酸盐岩和碎屑岩油气藏主要烃源岩的富含有机质巴尼特页岩的分布区。近些年,巴尼特页岩成藏层带的勘探、技术服务及钻井活动迅猛发展,到2005年底,已完成了大约3500口直井和1000口水平井,其中85%以上的井都是在1999年以后完成的。利用在向水平井完成过渡前直井完井高峰期巴尼特气藏的历史生产数据和地质资料,美国地质调查所对巴尼特页岩气进行了评价。开展评价工作前完成了下列工作:(1)测绘关键的地质与地球化学参数,确定具有增储潜力的评价单元的面积;(2)确定供油气面积(网格大小)的分布和估算每个网格的最终开采量;(3)估算未来的成功率。把连续型巴尼特页岩气藏划分为两个单元并分别进行了评价,得出有增储潜力的待发现天然气资源总量为26.2万亿立方英尺。大纽瓦克东裂缝遮挡连续型巴尼特页岩气评价单元代表着核心产气区域,这里厚层、富含有机质的硅质巴尼特页岩处在生气窗内(Ro≥1.19/6),上覆与下伏均为非渗透的灰岩地层(分别是宾夕法尼亚系马布尔福尔斯灰岩地层和奥陶系韦厄拉灰岩地层),这两套地层在完井期间会限制诱发裂缝的发展,从而最大限度提高天然气开采量。扩展的连续型巴尼特页岩气评价单元的勘探程度比较低,这里巴尼特页岩:(1)位于热生气窗内;(2)层厚大于100英尺(30米);(3)至少缺少一个非渗透的灰岩遮挡层。大纽瓦克东评价单元内,具有增储潜力的待发现天然气资源量平均值为14.6万亿�
简介:本文介绍了怎样用地层水的^87Sr/^86Sr值评价油气储层的分隔性。岩心样品的锶同位素残余盐分析(SrRSA),提供了一种测量油气层和含水层的地层水^87Sr/^86rSr值方法。平滑的SrRSA剖面表示油气充注是渐进和连续的,而且不存在封闭的隔层。如果SrRSA剖面具有梯状变化,则表明在井眼上倾方向存在封闭隔层。通过相邻井的真垂向深度(TVD)SrRSA剖面的对比,就可以推测储层的横向连通性。如果这些标绘于真垂向深度的SrRSA剖面相互叠合,则说明这些井具有共同的油气充注史,而且处于同一流动单元中。邻井SrRSA剖面如果未出现叠合,一般都说明储层存在分隔状态。油气充注后的构造倾斜和充注时的水动力作用,都会使数据解释复杂化。岩心水的钻井泥浆污染,是SrRSA方法最严重的技术局限。
简介:含气性参数是页岩气储层评价的重要指标,但是在2014年国土资源部颁布实施《页岩气资源与储量计算的评价技术规范》后的四川盆地涪陵地区龙马溪组一段—五峰组页岩气勘探中,发现计算含气性参数时存在3个突出问题:①对于中低电阻率(10~50Ω·m)的优质页岩气层,利用电测井信息求取含气饱和度会出现严重偏小的状况;②用等温吸附实验直接计算地层吸附气量会出现较大正偏差;③如何有效区分总含气量中的游离气和吸附气。因此,进行针对性分析研究,在对高阻和中低电阻率页岩气层、极低阻页岩层电性测井响应特征分析的基础上,全面解析各类页岩气储层测井电阻率的影响因素,改进形成了适应该区的含气性测井评价方法技术。结果表明:①利用中子、密度孔隙度及其差值等非电法测井信息计算游离气饱和度,避免了传统计算方法导致的偏差,尤其对于中低电阻率页岩气层,具有更加显著的应用效果;②基于岩心实验刻度求取吸附气及游离气含量的计算方法,避开了电信息等非相关性因素的直接影响。
简介:在经历过剥露作用的含油气盆地,烃源岩、储层和盖层的最大埋深一般都具有不确定性。澳大利亚东南部重要的产气区奥特韦盆地(Otway)就是如此,该盆地曾经历过多期次的剥露作用。在分析下白垩统河流相页岩声波时差资料的基础上,我们估算了110口陆上和海上油气井中地层的剥露幅度(exhumationmagnitudes)。结果表明,在奥特韦盆地东部陆上部分,后阿尔布期(post—Albian)的净剥露量很大(〉1500m),而在该盆地的其它地方,净剥露量一般很小(〈200m)。这些结果与根据热史资料得出的估算值一致。与中白垩世和新近纪挤压构造有关的净剥露量分布表明,剥露作用主要受控于板块边界作用力驱动下的短波长盆地反转(short—wavelengthbasininversion)。白垩纪早期,在奥特韦盆地东部陆上部分和盆地北部边缘一带,较大的埋深与高地热梯度耦合,使下白垩统烃源岩大都进入过成熟状态,来自最初充注的任何剩余烃类可能都被捕集在高度压实的储层和/或(与裂缝有关的)次生孔隙中。然而,在埋藏较深时期,这些储层中的蒙脱石粘土矿物转变为伊利石,使储层脆化,发生天然水力破裂作用,为低渗透率油气区带的发育创造了条件。当前接近最大埋深的烃源岩,其温度适合于天然气的生成,控制这些地区油气勘探潜力的关键因素是断裂圈闲的密封性以及油气充注和圈闲发育的时空配置。
简介:对美国墨西哥湾海岸平原东部阿拉巴马,jql西南部小锡达河油田(LittleCedarCreek)微生物碳酸盐岩及相关储层开展了综合研究,这次研究为认识微生物储层的沉积特征、岩石物理性质和产能趋势的空间分布提供了极好的机会。本研究项目描述了微生物岩的沉积、岩石物理和油气产能特征,建立了三维储层地质模型,并评价了这类储层的油气潜力。下部储层由与微生物建造相关的凝块叠层石粘结灰岩构成,这些建造走向南西一北东,面积83km2在油田的西部、中部和北部,微生物建造成簇发育,而且厚度达到了13m。分隔这些建造簇的是建造间发育的微生物岩,其厚度2-3m,上覆有受微生物活动影响的不具储集能力的厚层灰泥岩(1imemudstone)和粒泥灰岩(wackestone)。微生物储层的孔隙类型包括沉积成因的原始堆积孔隙(constructedvoid)(骨架内[intraframe])和成岩成因的溶蚀扩大洞穴孔隙(void)和孔洞孔隙(vuggypore)。这种孔隙系统使储集岩具有高渗透率和连通性,其渗透率可以高达7953md,孔隙度高达20%。微生物粘结灰岩极有可能构成油气流动单元。然而,这些建造被建造间发育的渗透率很低甚至不具渗透性的厚岩层分隔,而后者可能是流体流动的隔夹层。这个油田生产的1720万桶石油大都产自微生物岩相。小锡达河油田的研究成果可以为从微生物碳酸盐岩储层开采石油的其他类似油田开发方案的优化提供借鉴。