简介:摘要 : 冠层光截获能力是反映作物品种间差异的重要功能性状,高通量表型冠层光截获对提高作物改良效率具有重要意义。本研究以小麦为研究目标,利用数字化植物表型平台( D3P)模拟生成了 100种冠层结构不同的小麦品种在 5个生育期的三维冠层场景,记录了从原始冠层结构中提取的绿色叶面积指数( GAI)、平均倾角( AIA)和散射光截获率( FIPARdif)信息作为真实值 ,进一步利用上述三维小麦场景开展了虚拟的激光雷达( LiDAR)模拟实验,生成了对应的三维点云数据。基于模拟的点云数据提取了其高度分位数特征( H)和绿色分数特征( GF)。最后,利用人工神经网络( ANN)算法分别构建了从不同 LiDAR点云特征( H、 GF和 H+GF)输入到 FIPARdif、 GAI和 AIA的反演模型。结果表明,对于 GAI、 AIA和 FIPARdif,预测精度从高到低对应的点云特征输入为 GF+H > H > GF。由此可见, H特征对提高目标表型特性的估算精度起到了重要作用。输入 GF + H特征,在中等测量噪音( 10%)情况下, FIPARdif和 GAI的估算均获得了满意精度, R2分别为 0.95和 0.98,而 AIA的估算精度( R2=0.20)还有待进一步提升。本研究基于 D3P模拟数据开展,算法的实际表现还有待通过田间数据进一步验证。尽管如此,本研究验证了 D3P协助表型算法开发的能力,展示了高通量 LiDAR数据在估算田间冠层光截获和冠层结构方面的较高潜力。
简介:摘要 : 太阳能杀虫灯物联网( SIL-IoTs)是一种基于农业场景与物联网技术的新型物理农业虫害防治工具,通过无线传输太阳能杀虫灯组件状态数据,用户可后台实时查看太阳能杀虫灯运行状态,具有杀虫计数、虫害区域定位、辅助农情监测等功能。但随着 SIL-IoTs快速发展与广泛应用,故障诊断难和维护难等矛盾日益突出。基于此,本研究首先阐述了 SIL-IoTs的结构和研究现状,分析了故障诊断的重要性,指出了故障诊断是保障其可靠性的主要手段。接着介绍了目前太阳能杀虫灯节点自身存在的故障及其在无线传感网络( WSNs)中的体现,并进一步对 WSNs中的故障进行分类,包括基于行为、基于时间、基于组件以及基于影响区域的故障四类。随后讨论了统计方法、概率方法、层次路由方法、机器学习方法、拓扑控制方法和移动基站方法等目前主要使用的 WSNs故障诊断方法。此外,还探讨了 SIL-IoTs故障诊断策略,将故障诊断从行为上分为主动型诊断与被动型诊断策略,从监测类型上分为连续诊断、定期诊断、直接诊断与间接诊断策略,从设备上分为集中式、分布式与混合式策略。在以上故障诊断方法与策略的基础上,介绍了后台数据异常、部分节点通信异常、整个网络通信异常和未诊断出异常但实际存在异常四种故障现象下适用的 WSNs故障诊断调试工具,如 Sympathy、 Clairvoyant、 SNIF和 Dustminer。最后,强调了 SIL-IoTs的特性对故障诊断带来的潜在挑战,包括部署环境复杂、节点任务冲突、连续性区域节点无法传输数据和多种故障诊断失效等情形,并针对这些潜在挑战指出了合理的研究方向。由于 SIL-IoTs为农业物联网中典型应用,因此本研究可扩展至其它农业物联网中,并为这些农业物联网的故障诊断提供参考。