简介:随机需求库存-路径问题(StochasticDemandInventoryRoutingProblem,SDIRP)是典型的NP难题,也是实施供应商管理库存策略过程中的关键所在。文章通过引入固定分区策略(FixedPartitionPolicy,FPP),将SDIRP分解为若干个独立的子问题,并采用拉格朗日对偶理论以及次梯度算法确定最优的客户分区。在此基础上证明了各子问题的最优周期性策略由分区内各客户的(T,S)库存策略以及相应的最优旅行商路径构成,进而给出了客户需求服从泊松分布时求解最优(T,S)策略各参数的方程组,并设计了求解算法。最后,通过数值算例讨论了上述策略以及算法对于解决SDIRP的有效性。
简介:研究了一类奇异的非Newton多方渗流方程整体解存在性和渐进性.通过引进低能量函数的概念,证明了当初值u0(x)具有低能量时,其相应的解是整体存在的,且当t→∞时具有指数增长.
简介:研究了Banach空间中非线性混合型微分-积分方程初值问题u'=f(t,u,Tu,Su),u(0)=x0的整体解,完全没有要求f的任何增性,利用Monch不动点定理和比较结果得到了初值问题整体解的存在性和唯一解,并且给出了一致收敛于唯一解的迭代序列,改进推广和统一了已有的许多结果.