简介:在尼日尔三角洲,开发低重度原油油藏并不普遍。UsariBaseQuaIboe(BQI)油藏就是其中一例,其原油重度为18—20°API(相当于原油密度0.9465—0.9340),所在油田中有35个常规油藏(32—44°API重度,相当于原油相对密度0.8564—0.8063)。由于原油API重度低,油/水流度比不利,以及避免在70ft厚油柱下高产水的低产量策略,该水驱油藏直到最近都只有一部分投入开发。对尼日利亚和西澳大利亚类似油田所进行的一项研究引发了一场补充开发热潮,导致在不到12个月时间内产量增产近10倍,并且储量有显著提高。
简介:利用吉林通榆半干旱区农田站和退化草地站2008年的外场试验观测资料,对比分析了不同土地利用方式对蒸散和地表水分收支的影响。结果表明:从全年来看,尽管两个站点相距仅5km,但农田站的全年总蒸散量比代表自然土地覆盖状况的退化草地站高28.2mm;且生长季两种下垫面的蒸散量较为接近,差异主要发生在非生长季。同时,农田站的年水分收支总量为51.1mm,比退化草地站低35.6%。具体来说,生长季,两个站点的水分收支均有盈余;但在非生长季,退化草地站的水分收支仍有盈余,而农田站则处于水分亏损状态。这说明在半干旱区,代表人为土地利用状况的农田站面临着更大的水分供给压力,人类活动导致的土地利用会加剧该地区的干旱化趋势。进一步的分析表明,水分盈余并不代表地表的水分状况良好。从Prietley—Taylor系数来看,两个站点的Priestley-Taylor系数均远小于1.0,说明在半干旱区,由于表层土壤水分条件的限制,实际蒸散量远未达到平衡蒸散量,土壤面临着水分供给的压力。其可能的原因是,对半干旱区而言,尽管水分收支有盈余,但是由于土壤沙化严重,土壤孔隙度大,大气降水很容易下渗,并以地下水的形式存储起来,使得表层土壤水分供应反而不足。
简介:为探究玉米播种期水分胁迫及补水对玉米出苗率的影响,利用盆栽方式在玉米播种—出苗期开展水分胁迫及复水控制对比试验,分析播种日土壤相对湿度、播种后补水时间和补水量对辽西地区玉米出苗的影响。结果表明:玉米出苗率随播种日土壤相对湿度的降低,干旱持续时间的增加和补水量的减少而减小。播种后无补水,当播种日土壤相对湿度w播种为60%—70%时,出苗率达100%;w播种为50%—55%时,出苗率达66.7—77.8%;w播种为30%—45%时,出苗率为0。w播种为35%—45%时,持续5—20d干旱,补水20mm,出苗率为66.7%—100%,较补水10mm的出苗率为0%—77.8%。w播种为35%—45%时,需在10—20d内补水,所需补水量随补水时土壤相对湿度的减小而增加。研究结果可为春旱频发地区确定玉米播种后最迟补水时间和补水量下限提供有效的技术参考。
简介:我们曾报道了短梗霉菌产生的高纤维素酶产量98。在这项研究中,羧甲基纤维素酶(CMCase)在培养的细胞。短梗霉98的纯化至均一,与酶的最大产量为4.51U(mg蛋白)-1。SDS-PAGE分析表明,纯化的酶的分子量为67.0kda。具有相当的敏感性为40℃纯化的酶的最适温度,比从其他真菌的cmcases低得多。该酶的最佳pH值为5.6,和活动的个人资料被稳定在一个范围内的酸度(pH5,0-6.0)。这种酶被激活Na+,Mg2+,Ca2+,K+,Fe2+和Cu2+,然而,它是由Fe3+,Ba2+,Zn2+,Mn2+和银离子抑制。公里和纯化的酶的Vmax值4.7mgml-10.57pmolL-1min-1(mg蛋白)1,分别。只有大小不同的低聚糖,羧甲基纤维素(CMC)释放与纯化的酶水解后。该基因编码的酶是A.霉98个克隆,其中包含一个开放阅读框(eu978473)意义。推导的蛋白质含有酶超家族的保守结构域(糖基水解酶家族5)。的N-末端氨基酸序列的纯化的酶是m-a-p-h-a-e-p-q-s-q-t-t-e-q-t-s-s-g-q-f,这与从克隆的基因推导一致。这表明,纯化的酶是由克隆纤维素酶基因在酵母编码。