简介:摘要 : 纳米材料具有特殊的尺寸效应和优异的光电性质,已在传感分析中得到高度重视和广泛应用,大幅提高了传感分析技术的性能。近年来,智慧农业发展迅速,农产品质量安全作为农业生产的重要组成部分,对农业传感技术的灵敏度、稳定性和检测通量等指标要求越来越高。本综述简要阐述了几种常用的纳米材料的性质和特点,包括碳基纳米材料、金属纳米材料和金属 -有机框架材料等。重点论述了基于纳米材料的化学传感、生物传感、电化学传感和光谱传感等常用传感分析技术和器件,以及纳米传感分析技术在农产品质量安全,尤其在克伦特罗和三聚氰胺等危害物 ,甲硝唑、二噁英类化合物 ,违禁添加物 ,真菌毒素,锌、镉、铅等目标物,丙烯酰胺、呋喃类、硝基呋喃类抗生素监测等方面的应用。纳米材料的制备和修饰技术扔需要进一步提升,多目标、高通量纳米传感器件在实际应用中的价值广受关注,在线传感分析在农产品质量安全智慧监控方面有迫切需求需要快速、实时、在线监测。
简介:摘要 : 本研究针对农机管理实时数据少、农机实时作业监管困难、服务信息不对称等问题,首先提出专业化远程管理平台设计时应具有五大原则:专业化、标准化、云平台、模块化以及开放性。基于这些原则,本研究设计了基于大田作业智能传感技术、物联网技术、定位技术、遥感技术和地理信息系统的可定制化的通用农机远程智能管理平台。平台分别为各级政府管理部门、农机合作社、农机手、农户设计并实现了基于 WebGIS 的农机信息库及农机位置服务、农机作业实时监测与管理、农田基础信息管理、田间作物基本信息管理、农机调度管理、农机补贴管理、农机作业订单管理等多个实用模块。研究着重分析了在当前的技术背景下,平台部分关键技术的实现方法,包括采用低精度 GNSS定位系统前提下的作业面积的计算方法、 GNSS定位数据处理过程中的数据问题分析、农机调度算法、作业传感器信息的集成等,并提出了以地块为核心的管理平台建设思路;同时提出农机作业管理平台将逐步从简单作业管理转向大田农机综合管理。本平台对同类型管理平台的研发具有一定的参考与借鉴作用。
简介:摘要 : 数十年来,遥感技术一直被用作精准农业的重要数据采集工具。根据距离地面的高度,遥感平台主要包括卫星、有人驾驶飞机、无人驾驶飞机系统和地面车辆。这些遥感平台上搭载的绝大多数传感器是成像传感器,也可以安装激光雷达等其他传感器。近年来,卫星成像传感器的发展极大地缩小了基于飞机的成像传感器在空间、光谱和时间分辨率方面的差距。最近几年,作为低成本遥感平台的无人机系统的出现极大地填补了有人驾驶飞机与地面平台之间的间距。有人飞机具有飞行高度灵活、飞行速度快、载荷量大、飞行时间长、飞行限制少以及耐候性强等优势,因此在未来仍将是主要的精准农业遥感平台。本文的第 1部分概述了遥感传感器的类型和三个主要的遥感平台(即卫星、有人驾驶飞机和无人驾驶飞机系统)。接下来的两个部分重点介绍用于精准农业的有人机载成像系统,包括由安装在农用飞机上的消费级相机组成的系统,并详细描述了部分定制和商用机载成像系统,包括多光谱相机、高光谱相机和热成像相机。第 4部分提供了五个应用实例,说明如何将不同类型的遥感图像用于精准农业应用中的作物生长评估和作物病虫害管理。最后简要讨论了将不同遥感平台和成像系统用于精准农业上的一些挑战和未来的努力方向。
简介:摘要 : 农业模型、农业人工智能及数据分析等技术贯穿于智慧农业的信息感知、信息传输、信息处理与控制全过程,是智慧农业的核心技术。为进一步明晰农业模型的内涵和作用,促进农业模型进一步研究及应用,推动智慧农业健康、稳定和可持续发展,本研究采用系统分析、比较及关系框图等方法,分析了农业模型的内涵,阐述了农业模型和智慧农业要素与过程的关系,明确了农业模型的作用并附以应用案例,比较了农业模型的国内外重要发展动态与趋势。国内外农业模型研究与应用重要进展比较表明,农业模型研究应用需要考虑农业生物要素的 4个水平、农业环境要素的 6个尺度、农业技术与农业经济要素的 6个层次并采用相应方法进行,农业模型环境要素空间多尺度研究应用有较大发展潜力;农业模型与分子遗传学、感知技术及人工智能技术结合,农业模型研究应用的公私有组织协作,粮食安全挑战将成为农业模型进一步发展的重要推动力,且需更注重将各种农业系统模拟、数据库、和谐性与开放数据及决策支持系统相连接。中国农业模型研究与应用已形成具有中国特色的作物模型系列,也融入农业模型的互比较与改进、智慧农业等世界潮流,需要抢抓机遇,加快发展。农业模型是农业系统要素内及要素间关系的定量化表达,是农业科学定量与综合的重要方法,具有认识论价值,它与感知技术的结合可以在智慧农业数据获取与处理中发挥不可或缺的作用,成为信息农业技术落地应用的重要桥梁和纽带。
简介:<正>湖南化工研究院创建于1951年,主要从事农药、精细化工、无机功能材料等领域新技术、新产品的研究和工程技术开发,是国家农药创制工程技术研究中心的依托单位。下设5个专业研究所和4个技术服务中心,现有科研人员160余人,其中高级职称58人、中级职称66人,博士6人、硕士19人。拥有国家氨基甲酸酯类农药工业性试验基地、湖南省农用化学品重点实验室、湖南省化肥农药质量监督检验授权站、湖南省化工信息中心,与国内6所高校联合建有农药学、有机化学、化学工程等专业博士点和硕士点;国家农药创制工程技术研究中心在农药技术研究与开发方面已形成了集新化合物设计与合成、结构表征、生物活性筛选、工艺研究、工程技术开发、应用技术研究以及信息咨询等于一体的较为完整的应用基础与应用开发研究体系。
简介:摘要 : 准确获取西兰花花球面积和新鲜度是确定其长势的关键步骤,本研究通过对深度残差网络 ResNet进行改进得到一种新型的西兰花花球分割模型,并通过花球部位黄绿颜色占比判断其新鲜度,实现低成本高效准确地西兰花表型信息提取。主要技术流程包括:( 1)基于地面自动影像获取平台拍摄西兰花花球正射影像并建立原始数据集;( 2)对训练图像进行预处理并输入模型进行分割;( 3)基于颜色信息用粒子群结构 PSO和大津法 Otsu对分割结果进一步进行阈值分割,获取其新鲜度指标。试验结果表明:本研究建立的分割模型精度优于传统深度学习模型和基于颜色空间变换和阈值分割模型, 4个评价指标结构相似性指数 (SSIM)、平均精度 (Precision)、平均召回率 (Recall)、 F-度量 (F-measure)结果分别为 0.911、 0.897、 0.908和 0.907,相比于传统方法提升了 10%-15%,且对土壤反射率波动、冠层阴影、辐射强度变化等干扰具有一定的鲁棒性。同时,在分割结果的基础上采用 PSO-Otsu法可以实现花球新鲜度快速分析,其精度超过了 0.8。本研究结果实现了西兰花田间多表型参数的高通量获取,可以为作物田间长势监测研究提供重要参考。
简介:摘要 : 土壤养分作为农业生产的重要指标,含量过少会降低农作物产量,过多则会造成环境污染。因此,快速、准确检测土壤养分对于精准施肥和提高作物产量具有重要意义。基于取样和化学分析的传统方法能够全面准确地检测土壤养分,但检测过程中土壤的取样及预处理过程繁琐、操作复杂、费时费力,不能实现土壤养分的原位快速检测。本研究基于调制近红外光谱,提出了一种土壤养分主动式近场遥测方法,可有效避免土壤反射自然光的干扰。该方法使用波长范围 1260~1610 nm的 8通道窄带激光二极管作为近红外光源,通过测量 8通道激光光束的土壤反射率,建立土壤养分中氮( N)关于土壤反射率的计量模型,实现了 N的快速检测。在 74组已知 N含量的土壤样品中,选取 54组作为训练集, 20组作为预测集。基于一般线性模型,对训练集中土壤 N含量与土壤反射率的定量化参数进行训练,筛选显著波段后的计量模型 R2达到 0.97。基于建立的计量模型,预测集中土壤 N含量预测值与参考值的决定系数 R2达到 0.9,结果表明该方法具有土壤养分现场快速检测的能力。
简介:摘要 : 水稻叶片叶绿素含量遥感诊断是实现水稻精准施肥的核心要素。本研究通过分析寒地水稻关键生育期叶片高光谱反射率信息,同时结合 PROSPECT模型叶绿素含量吸收系数,参考借鉴现有高光谱植被指数的构造方法和形式,利用相关性分析、连续投影法、遗传算法优化的粗糙集属性简约法进行高光谱特征选择,提出了仅含有 695、 507和 465nm 3个高光谱特征波段的红边优化指数( ORVI)。与 Index Data Base数据库中其他用于叶绿素含量反演植被指数,包括 ND528,587、 SR440,690、 CARI、 MCARI的反演结果进行了对比分析,结果表明: IDB数据库中的已有 4种植被指数叶绿素含量反演模型的决定系数 R2分别为 0.672、 0.630、 0.595和 0.574; ORVI植被所建立的叶绿素含量反演模型的决定系数 R2为 0.726,均方根误差 RMSE为 2.68,精度高于其他植被指数,说明了 ORVI在实际的应用中,能够作为快速反演水稻叶绿素含量的高光谱植被指数。本研究能够为寒地水稻叶绿素含量高光谱遥感诊断及管理决策提供一定的客观数据支撑和模型参考。
简介:摘要 : 叶片湿润时间( LWD)是植物病害模型的重要输入变量之一,它与许多叶部病原菌的侵染有关,影响病原侵染和发育速率。为了准确地预测日光温室黄瓜病害的发生时间和方位,本研究于 2019年 3月和 9月在北京两个不同类型日光温室内按照棋盘格法设置了 9个采样点部署温湿光传感器和目测叶片湿润时间,每隔 1 h采集一次温度、湿度、辐射和叶片湿润数据进行定量估算分析。分析结果表明: BP神经网络模型在两个温室的试验条件下获得了相似的准确度( ACC为 0.90和 0.92),比相对湿度经验模型估算叶片湿润时间的准确度( ACC为 0.82和 0.84)更高,平均绝对误差 MAE分别为 1.81和 1.61 h,均方根误差 RSME分别为 2.10和 1.87,决定系数 R2分别为 0.87和 0.85;在晴天和多云天气条件下,叶片湿润时间的空间分布总体规律是南部>中部>北部,南面是叶片湿润平均时间( 12.17 h/d)最长的区域;由东向西方向上,叶片湿润时间的空间分布总体规律是东部>西部>中部,中部是叶片湿润平均时间( 4.83 h/d)最短的区域;雨天的叶片湿润平均时间比晴天和多云长,春季和秋季分别为 17.15和 17.41 h/d。这些变化和差异对温室黄瓜种群水平方向的叶片湿润时间分布具有重要影响,与大多数高湿性黄瓜病害的发生规律密切相关。本研究为预测温室黄瓜病害分布提供了有价值的参考,对控制病害流行和减少农药使用具有重要意义,提出的区域化分析温室内叶片湿润时间的方法,可以为模拟日光温室叶片湿润时间的空间分布提供参考。