学科分类
/ 1
5 个结果
  • 简介:摘要 : 溶解氧含量的测量对水产养殖具有极其重要的意义,但目前中国市面上的溶解氧传感存在价格昂贵、不能持续在线测量及更新部件维护困难等问题,难以在水产养殖物联网中大规模推广和发挥作用。本研究基于荧光淬灭原理,利用水中溶解氧浓度与荧光信号相位差的关系进行低成本、易维护溶解氧传感的研发。首先利用自制备溶氧敏感膜,经激发光照射后产生红色荧光,该荧光寿命可由溶解氧浓度调节;然后利用光信号敏感器件设计光电转化电路实现光信号感知;再以 STM32F103微处理作为主控芯片,编写下位机程序实现激发光脉冲产生,利用相敏检波原理以及快速傅里叶变换( FFT)计算激发光与参照光的相位差,进而转化为溶解氧浓度,实现溶解氧的测量。荧光探测部分与系统主控部分采用分离式设计思想,利用屏蔽排线直接插拔连接,便于传感探测头的拆卸、更换、维护以及实现远距离在线测量。经测试,本溶解氧传感的测量范围是 0~20 mg/L,响应延迟小于 2 s,溶氧敏感膜使用寿命约 1年,可以实时不间断地对溶解氧浓度进行测量。同时,本传感具有测量方便、制作成本低、体积小等特点,为中国水产养殖低成本溶解氧传感的研发与市场化奠定了良好的基础。

  • 标签: 溶解氧传感器 荧光淬灭 水产养殖 STM32微处理器 溶氧敏感膜
  • 简介:摘要 : 随着无线终端数量的快速增长和多媒体图像等高带宽传输业务需求的增加,农业物联网相关领域可预见地会出现无线频谱资源紧缺问题。针对基于传统物联网的作物表型信息采集系统中存在由于节点密集部署导致数据传输过程容易出现频谱竞争、数据拥堵的现象以及固定电池的网络由于能耗不均衡引起监测周期缩减等诸多问题,本研究建立了一个认知无线传感网络( CRSN)作物表型信息采集模型,并针对模型提出一种引入边缘计算机制的动态频谱和能耗均衡( DSEB)的事件驱动分簇路由算法。算法包括:( 1)动态频谱感知分簇,采用层次聚类算法结合频谱感知获取的可用信道、节点间的距离、剩余能量和邻居节点度为相似度对被监控区域内的节点进行聚类分簇并选取簇头,构建分簇拓扑的过程对各分簇大小的均衡性引入奖励和惩罚因子,提升网络各分簇平均频谱利用率;( 2)融入边缘计算的事件触发数据路由,根据构建的分簇拓扑结构,将待检测各区域变化异常表型信息触发事件以簇内汇聚和簇间中继交替迭代方式转发至汇聚节点,簇内汇聚包括直传和簇内中继,簇间中继包括主网关节点和次网关节点 -主网关节点两种情况;( 3)基于频谱变化和通信服务质量( QoS)的自适应重新分簇:基于主用户行为变化引起的可用信道改变,或分簇效果不佳对通信服务质量产生的干扰,触发 CRSN进行自适应重新分簇。此外,本研究还提出了一种新的能耗均衡策略去能量消耗中心化(假设 sink为中心),即在网关或簇头节点选取计算式中引入与节点到 sink的距离成正比的权重系数。算法仿真结果表明,与采用 K-medoid分簇和能量感知的事件驱动分簇 (ERP)路由方案相比,在 CRSN节点数为定值的前提下,基于 DSEB的分簇路由算法在网络生存期与能效等方面均具有一定的改进;在主用户节点数为定值时,所提算法比其它两种算法具有更高频谱利用率。

  • 标签: 认知无线传感器网络 (CRSN) 作物表型信息采集 能耗均衡 分簇路由
  • 简介:[目的/意义]大规模肉羊畜舍人工消毒存在费时费力、覆盖不全和消毒不彻底的问题,为保持畜舍卫生和肉羊健康,本研究提出一种羊场自动导航喷药机器.[方法]从硬件、语义分割模型和控制算法3个方面设计了自动导航喷药机器.硬件部分包括履带底盘、摄像头和折叠式喷药装置.语义分割模型部分通过引入压缩通道网络注意力(Squeeze-and-Excitation Network,SENet)和基于场景改进的十字交叉注意力(Criss-Cross Attention,CCA)模块,提出一种双注意力ENet语义分割模型(Double Attention ENet,DAENet).在控制算法方面,针对机器在面对岔路时无法控制行进方向的问题,利用模拟真实道路的方法,在羊舍外的道路上绘出车道线,提出了道路中心点识别和车道线中心点识别两种算法来计算机器行进过程中的导航点.为了实现上述两种算法,使用了两台摄像头并设计了摄像头切换算.

  • 标签: 自动导航喷药机器人计算机视觉语义分割注意力模块中心点计算DAENet
  • 简介:摘要 : 准确获取西兰花花球面积和新鲜度是确定其长势的关键步骤,本研究通过对深度残差网络 ResNet进行改进得到一种新型的西兰花花球分割模型,并通过花球部位黄绿颜色占比判断其新鲜度,实现低成本高效准确地西兰花表型信息提取。主要技术流程包括:( 1)基于地面自动影像获取平台拍摄西兰花花球正射影像并建立原始数据集;( 2)对训练图像进行预处理并输入模型进行分割;( 3)基于颜色信息用粒子群结构 PSO和大津法 Otsu对分割结果进一步进行阈值分割,获取其新鲜度指标。试验结果表明:本研究建立的分割模型精度优于传统深度学习模型和基于颜色空间变换和阈值分割模型, 4个评价指标结构相似性指数 (SSIM)、平均精度 (Precision)、平均召回率 (Recall)、 F-度量 (F-measure)结果分别为 0.911、 0.897、 0.908和 0.907,相比于传统方法提升了 10%-15%,且对土壤反射率波动、冠层阴影、辐射强度变化等干扰具有一定的鲁棒性。同时,在分割结果的基础上采用 PSO-Otsu法可以实现花球新鲜度快速分析,其精度超过了 0.8。本研究结果实现了西兰花田间多表型参数的高通量获取,可以为作物田间长势监测研究提供重要参考。

  • 标签: 深度学习 西兰花表型 机器视觉 自动分级 田间平台
  • 简介:摘要 : 纳米材料具有特殊的尺寸效应和优异的光电性质,已在传感分析中得到高度重视和广泛应用,大幅提高了传感分析技术的性能。近年来,智慧农业发展迅速,农产品质量安全作为农业生产的重要组成部分,对农业传感技术的灵敏度、稳定性和检测通量等指标要求越来越高。本综述简要阐述了几种常用的纳米材料的性质和特点,包括碳基纳米材料、金属纳米材料和金属 -有机框架材料等。重点论述了基于纳米材料的化学传感、生物传感、电化学传感和光谱传感等常用传感分析技术和器件,以及纳米传感分析技术在农产品质量安全,尤其在克伦特罗和三聚氰胺等危害物 ,甲硝唑、二噁英类化合物 ,违禁添加物 ,真菌毒素,锌、镉、铅等目标物,丙烯酰胺、呋喃类、硝基呋喃类抗生素监测等方面的应用。纳米材料的制备和修饰技术扔需要进一步提升,多目标、高通量纳米传感件在实际应用中的价值广受关注,在线传感分析在农产品质量安全智慧监控方面有迫切需求需要快速、实时、在线监测。

  • 标签: 纳米材料 智慧农业 农产品质量安全 纳米传感器