简介:如今非常规石油生产是石油工业关注的重点,因而纳米孔隙介质中流体的相态特征也引起了人们的高度重视。页岩储层中极小的孔隙尺寸影响流体的相平衡。文中把Peng-Robinson三次状态方程(P1K—EOS)与Young—Laplace毛细管压力公式、气一液逸度计算(fugacityofvapor—liquidcalculation)以及变换后的临界性质(shiftedcriticalproperties)结合在一起,研究了沃尔夫坎普(Wolfcamp)页岩纳米孔隙中石油的相平衡。压汞实验结果表明,沃尔夫坎普页岩岩心中有93.7%的孔隙直径都小于10nto。首次建立了含多组分石油的真实沃尔夫坎普页岩储层的毛细管压力曲线。结果显示,在孔隙半径(r)为10nto时泡点压力被压制了17.3%,而在r为1.5nm时泡点压力被压制了63.8%。在r大于50nm时,界面张力(IFT)缓慢减小。然而,随着r进一步减小,IFT快速下降,尤其是在r小于10nm时这种情况表现尤为明显。纳米孔隙的局限效应(confinementeffect)使两相区变窄,导致毛细管压力较低.而低气油比的生产期变长。
简介:对储层条件下无定形和结晶二氧化硅纳米颗粒助稳的超,临界二氧化碳泡沫进行了研究,目的是为了应用二氧化碳泡沫驱提高采收率。采用三种二氧化硅纳米颗粒研究了颗粒结构及润湿性对生成超临界二氧化碳泡沫的作用,这三种颗粒具有晶体结构或无定形结构,润湿性各异。在不同的相比和总流量下,研究了二氧化硅纳米颗粒结构和及其疏水性对超临界二氧化碳泡沫特性的影响,如泡沫形态、泡沫阻力系数和流度等。研究结果表明,结晶二氧化硅和无定形二氧化硅助稳的二氧化碳泡沫具有相似的流动特性。纳米二氧化硅的疏水性对生成二氧化碳泡沫作用最大,二氧化碳气泡的尺寸随二氧化硅纳米颗粒疏水性的增强而大大减小。在比较大的相比及总流量分布范围内,疏水性最强的二氧化硅纳米颗粒所造成的泡沫流度降低幅度都是最大的。