简介:为了更好地理解不同空间坐标系下流体界面对Rayleigh—Taylor(RT)不稳定性弱非线性阶段谐波的影响,文章采用3阶小扰动展开法,解析研究了球坐标空间经典RT不稳定性弱非线性阶段谐波的演化规律,并和柱坐标空间以及直角坐标空间相应结果进行了对比研究.当球坐标系和直角坐标系中RT不稳定性界面扰动波长相同,球坐标系中初始扰动半径为无穷大时(即球坐标下RT不稳定性初始扰动半径相对于扰动波长为无穷大时),球坐标下RT不稳定性前4次谐波的结果和直角坐标系下的相应结果相同.研究表明:由初始界面曲率引起的Bell-Plesset(BP)效应和空间效应(直角坐标空间、柱坐标空间和球坐标空间)对谐波发展有较大的影响.即在不同正交曲线坐标系下,不同曲率的流体界面效应对RT不稳定性谐波发展有较大的影响.对于柱坐标空间和球坐标空间,2阶对0次谐波的反馈加强了界面向内收缩.研究还表明:界面效应增加了2次谐波的负反馈,然而,对于基模和3次谐波却有不同的影响.
简介:通过理论推导提出了一种评价高速流动PIV示踪粒子随流能力的松弛特性分析模型,在法向Mach数大于1.4时具有良好的适用性.将新模型应用于试验测量,发展了高速流动PIV系统和示踪粒子布撒技术,验证了高速流动PIV的定量化测量能力.针对空间发展的二维超声速气固两相混合层,数值模拟了不同Stokes数和对流Mach数(M_c)下的粒子跟随性以及弥散和迁徙运动,结果表明:相同对流Mach数,粒径越小的示踪粒子跟随性越好,Stokes数在[1,10]范围内的粒子有最大扩散距离.示踪粒子的直径大小决定其在超声速混合层大涡拟序结构中的分布特征,且粒径越小,气体与粒子的掺混越剧烈.相同粒径的粒子,对流Mach数越大跟随性越差.
简介:为提高攻击导弹同时面对目标飞机及其防御导弹情况下的命中概率,基于微分对策理论,对攻击导弹的制导律进行了设计。应对独立控制的多对象博弈问题,微分对策理论具有天然的优势,且相比于最优制导律,微分对策制导律对于目标机动估计误差和机动策略具有更强的鲁棒性。所推导的微分对策制导律进一步考虑了攻击导弹的控制有界性,且适用于攻击导弹、目标飞机和防御导弹具有高阶线性控制系统动态的情形。为验证制导律性能,进行了非线性系统仿真,结果表明该制导律在成功归避防御导弹的同时可实现趋于零脱靶量的目标拦截。攻击导弹为实现规避和攻击的双重任务,仅需要保持相比于防御导弹两倍左右的机动优势。
简介:针对惯导平台连续翻滚自标定中安装误差标定精度不高这一现状,提出了一种解决方案。通过对惯性器件的输出误差模型和安装误差的分析,建立了系统的姿态动力学方程和观测方程,利用输出灵敏度理论分析了系统的可观性,指出加速度计安装误差可观性较差是影响标定精度的主要原因。利用Kalman滤波中的估值方差矩阵计算了安装误差之间的相关系数,计算结果表明可观性差是由安装误差之间的线性相关性造成的,并确定了具体的不可观参数。以加速度计输入轴为基准建立平台坐标系可以减少安装误差项,使所有的安装误差的变得可观。最后的仿真结果表明在新的方案下,安装误差的估值偏差小于5",标定精度得到了显著提高。
简介:采用理论分析和数值模拟相结合的方法,系统研究了尺度自适应模拟(scale-adaptivesimulation,SAS)和大涡模拟(large-eddysimulation,LES)的关联性问题.在理论分析方面,对比分析了系综平均和滤波的定义、Spalart-Allmaras(SA)湍流模型和动态亚格子(subgrid-scale,SGS)模型关于湍流黏性系数的求解方式.理论分析结果表明,系综平均等价于盒式直接滤波,SAS和LES的控制方程在数学形式上具有一致性;SAS存在过多的湍流耗散,主要来自于SA输运方程中的扩散项.在数值模拟方面,选取来流Mach数0.55,Reynolds数2×10-5的圆柱可压缩绕流为分析算例.计算结果表明,SAS和LES预测的大尺度平均流场信息几乎一致,SAS预测的湍流脉动信息略低于LES.SAS在圆柱近尾迹区的湍流耗散过大,而在稍远的尾迹区几乎能够完全等效于LES.
简介:针对多飞行器协同拦截机动目标过程中的目标状态估计问题,提出了一种多飞行器对目标加速度的一致性协同估计方法。构建了多飞行器分布式协同估计结构,将扩张状态观测器和一致性理论相结合,设计了分布式协同一致性估计器。利用扩张状态观测器对目标状态进行估计,在此基础上利用一致性理论为各飞行器设计协调控制量,通过局部信息交换使得各飞行器得到一致的估计值,实现对目标加速度的精确估计。利用稳定性判定理论对一致性估计器的误差和收敛性能进行了分析,并将设计的一致性协同估计方法应用到协同拦截系统中进行了仿真验证。仿真结果显示,在不同的目标机动形式下,对目标加速度估计误差始终小于0.5m/s2,因此设计的一致性估计方法能够实现对目标加速度的精确估计,且具有较强的鲁棒性。
简介:温度是IMU及其他导航器件等精密仪器中需要监测的重要参数,传统的温度监测一般使用热电偶或者数字温度传感器(如DS18B20)等,监测程序复杂,功耗高,因此使用精密仪器中广泛采用的FPGA芯片独立完成高集成度、低功耗温度监测具有重要意义.在FPGA中通过搭建环形振荡器产生了自激振荡信号,该信号周期与FPGA芯片温度具有正相关性,通过对振荡信号周期的检测完成了对温度的监测,设计了一种以FPGA芯片同时作为敏感头和处理模块的温度传感器.通过对XilinxVirtex-2系列FPGA芯片进行实验,得到该传感器在-40℃~+60℃的范围内具有优于0.1℃的分辨率,优于0.5℃的检测精度,满足一般温度监测需要.实验表明该传感器具有功耗低、集成度高、可靠性好等优点.