简介:以泛函分析的观点来考察连续小波变换及小波框架算子,得到了它们的一些性质,并给出了严格证明,弥补了有关文献中的不足.
简介:通过使用叠合度理论、M-矩阵、李雅谱诺夫函数和不等式技巧等,在时间尺度上研究带有狄利克雷边值和反应扩散项的非自治模糊细胞神经网络的全局指数稳定性,并获得一些使其存在全局指数稳定的平衡点的充分条件.最后,给出一个例子去验证结论的有效性.
简介:polarizableCarnot组的一些新性质被给。由在thepolarizableCarnot上选一个合适的常数为非分叉Dirichlet问题的一个班的一个重要答案,组被构造。因此,correspondingnon同类的Dirichlet问题的多答案性质被证明,在famousAlexandrov-Bakelman-Pucci类型估计的L~Q标准可能的最好被讨论。
简介:树指标随机过程已成为近年来发展起来的概率论的研究方向之一.强偏差定理一直是国际概率论界研究的中心课题之一.本文通过构造适当的非负鞅,将Doob鞅收敛定理应用于几乎处处收敛的研究,给出了一类非齐次树上m阶非齐次马氏链的一类强偏差定理.
简介:建立了一维p-laplacian方程(1)的一切解均为非振动的必要条件.所得定理改进了Kusano等在文[4]中的相应结果.
简介:运用Zorn引理得到了非紧,非单调算子不动点存在性的一些有趣结果.
简介:运用Banach极限的技巧将收敛控制条件进一步放宽,去掉了∑x=1^∞|αn+1-an|〈∞条件,在相对山弱的条件Txn+1-Txn→0,n→∞下证明了一个强收敛定理,改进了Wittmann的结果.
简介:通过一个反例,证明了非方常数为√2的相关猜想.
简介:首先我们证明了,如果尺度函数有紧支集,来自多尺度分析的小波函数的支集形式.然后我们证明了Y.Meyer小波的尺度函数的一般形式.最后我们给出了它的另外两种形式和对应的Y.Meyer小波.
简介:给出了由压缩函数族Si(x)=(x/M)+(i/m),(M>m>1,i=0,1,2,…,m-1)通过限制某个Si出现的方式而产生的压缩不变案Ex,v.根据一个相关序列案个数的特征及连分数性质,证明了集Ex,v的盒维数与Hausdorff维数相等.
简介:本文讨论了迁移理论中一类控制临界本征方程,运用L^2空间上的线性算子理论,我们获得了这类方程的的控制参数在复平面的分布情况及非负解存在唯一的条件。
简介:本文的目的是研究如下非局部椭圆算子方程在Dirichlet边界条件下变号解的存在性{-Lku=f(x,u)inΩ,u=0,inR^n/Ω,其中Ω∈R^n(n≥2)是具有光滑边界的有界区域,非线性项f满足超线性以及次临界增长条件.利用变号临界点定理,证明了在更弱的条件下无穷多变号解的存在性.
简介:本文研究抽象空间中一类具有非紧半群的半线性发展方程非局部问题.在非线性项满足适当增长条件的情形下,运用算子半群理论、Sadovskii不动点定理及凝聚映射的拓扑度不动点定理获得了所研究问题mild解的存在性.特别地,我们发现本文所得结论对抽象空间中的常微分方程非局部问题同样成立.最后,我们给出一个具体的抛物型偏微分方程非局部问题的例子来说明本文所得抽象结果的可行性.
简介:利用提升格式,构造了CDF型的双正交小波,并探讨了提升算子S的选择规律,最后给出构造实例,结果表明:这种构造方法比传统的构造方法简单、易行,而且选择不同的提升算子S,可以得到不同性质的双正交小波,充分显示出这种构造方法的实用性和广泛性。
简介:设(M^3,90)是非紧三维Riemann流形,其Ricci曲率非负,单射半径有正的下界,且当x→∞时数量曲率R(x)→0。则以(M^3,go)为初始值的Ricci流在M^3×[0,∞)上有长期解。这推广了马和朱最近的一个结果.在高维情形我们也有相应的结果,并且我们给Chau,Tam和Yu在Ktihler情形的类似定理一个新的证明。
简介:考虑有限维空间Rn(n>1)中目标映射是仿凸锥映射的向量优化问题.通过对偶锥的端方向和标量函数的0-强制性给出了弱有效解集非空性和紧性的刻画.
简介:给出了一个小Bloch函数的几个等价条件。
简介:我们研究发现,在离散超小波变换下双正交小波谱是有界的.并且任何一个双正交小波变换的谱不可能分布在1附近的某个区间内,并给出了该区间的一个估计.
简介:文章针对特殊的非负矩阵,应月简单的相似变换,使矩阵保持非负性且最大行和减小,从而得到行和为正非负矩阵Perron根的新上界.
简介:讨论了非线性中立型微分差分方程[y(i)+P(t)g(y(t-τ)]'+Q(t)h(y(t-σ)=0的非振动解的渐近性,得到了方程非振动解在一定条件下趋于0,+∝,-∞的几个重要结论和一系列相关的结果。
连续小波变换及小波框架算子的一些性质
基于时间尺度理论研究非自治模糊细胞神经网络的全局指数稳定性
可极化Carnot群上一类非散度型方程的非平凡解
非齐次树上非齐次马氏链的一类强偏差定理
一维p—laplacian方程的非振动性
一类非紧算子的不动点
非扩展非自映像不动点的迭代构造研究
关于非方常数问题的一个反例
Y.Meyer小波的一般形式
一类非自相似集的强正则性
一类积-微分参数方程的非负解
一类非局部椭圆算子的无穷多变号解
具有非紧半群的发展方程非局部问题mild解的存在性
一种构造CDF型双正交小波的方法
关于非紧流形上的Ricci流的一个注记
向量优化问题弱有效解集的非空性和紧性刻画
关于小Bloch函数
离散超小波变换下双正交小波谱分析
非负矩阵Perron根的上界
非振动解的渐近性(续)