简介:引入独立参数A及应用改进的Euler-Maclaurin求和公式以估算权系数,给出了—个具有最佳常数因子的逆向Hilbert型不等式的推广.作为应用,考虑了它的等价形式.
简介:对赋Luxember范数或Orlicz范数的Orlicz型序列空间,诸如古典的、广义的及参数式的,本文总结、补充、比较列出了暴露点及暴露性的充分必要刻画,并对以往结果中的错误进行了修正,从而在序列空间方面系统地完成了有关暴露性的刻画。
简介:设g1.g2为正规函数.对所有的0〈p.q〈∞,我们得到了Bergma型空间的加权Cesaro算子Tψ:Ag1^p→Ag2^q为有界算子和紧算子的充要条件.
简介:利用文献[1]中非对称逼近的方法得到了周期型Bohr不等式.