简介:给出了n阶带形状参数的三角多项式T-Bézier基函数.由带形状参数的三角多项式T-Bézier基组成的带形状参数的T-Bézier曲线,可通过改变形状参数的取值而调整曲线形状,随着形状参数的增加,带形状参数的T-Bézier曲线将接近于控制多边形,并且可以精确表示圆、螺旋线等曲线.阶数的升高,形状参数的取值范围将扩大.
简介:AKekuléanbenzenoidsystemisonewithKekuléstructures.Afixeddouble(single)bondofaKekuléanbenzenoidsystemHisanedgebelongingtoall(none)oftheKekuléstructuresofH.EssentiallydisconnectedsystemsareKekuléanpericondensedbenzenoidsystemswithsomefixeddoubleorsinglebonds.InthispaperanecessaryandsufficientconditionforaKekuléanbenzenoidsystemtobeanessentiallydisconnectedbenzenoidsystemwithfixeddoublebondsisgivenandrigorouslyproved.
简介:单个不可分的操作员g_(Ω,α),和Marcinkiewicz不可分的操作员μ_(Ω,α)被学习。操作符的内核象|y一样表现|~(-n-α)(α>0)接近起源,并且包含震荡的因素e~((i|y|)~(-β))(β>0)并且联合起来的范围S~(n-1)上的分发Ω。如果Ω与0
简介:带柔性时间窗的开放式车辆路径问题(OpeningVehicleRoutingProblemwithFlexibleTimewin—dows,OVRPFTW)对物流配送中的延迟或者提早具有一定程度的容忍.本文首先建立了OVRPFTW的数学模型,然后分别将Sine映射,Chebyshev映射和Logistic映射引入基本蚁群算法,构建了三种混沌蚁群算法,并将其用于求解OVRPFTW.算倒测试表明:Sine映射和Chebyshev映射能够明显地改进基本蚁群算法的优化性能,基于Sine映射和Chebyshev映射的混沌蚁群算法的求解性能优于基本蚁群算法和基于Logistic映射的混沌蚁群算法.
简介:本文应用Markov骨架过程方法,研究了带干扰的理赔为一般到达的保险风险模型,得到了破产时间与破产时刻前后资产盈余的联合分布以及破产时间的分布.