简介:讨论了稳定矩阵Keroncker积与Hadamard积的一些性质,得到了某些类型稳定矩阵的Ker-onecker积与Hadamard积是稳定矩阵的一些条件。
简介:半正定矩阵与正定矩阵在不等式的研究上有相当大的区别,将正定矩阵推广至半正定矩阵,需要用MoorePenrose逆来代替一般的逆。利用分块矩阵和Schur补得到了关于半正定矩阵Moore-Penrose逆的Had-amard积的几个偏序不等式。
简介:研究了量子群胚上与弱模余代数和余模余代数相关的弱广义smash余积的对偶定理.设H是弱Hopf代数,C是弱左H余模余代数,D是弱左H模余代数.首先,给出量子群胚上的弱广义smash余积C×lHD的定义,并构造其模和余模结构.类似考虑右广义smash余积C×LrD.然后得到它们之间的同构.其次,通过引入弱卷积逆,弱余内作用和强相关余内作用的概念,得到C×HrD和CvD同构的充分条件,其中v∈WC(C,H),H在D上的余作用是右强相关余内作用.最后,证明了量子群胚上广义smash余积的对偶定理:(C×HlH)×lH*H*≌Cv(H×lH*H*).