简介:BP神经网络分类器在信号识别领域得到了比较广泛的应用,针对其低信噪比环境下识别率相对较低的问题,引入人工蜂群算法(ABC),将求解BP神经网络各层权值、阂值的过程向蜜蜂寻找最优蜜源的过程转变,最后阐述了一种以人工蜂群算法为基础的神经网络分类器设计方法(ABCBP算法),并以2ASK,2FSK,2DPSK信号为例,对信号进行小波包分解后,将信号各频段的能量值数据作为实验样本,对其进行了信号分类。仿真结果表明:基于人工蜂群算法的优化BP神经网络分类器,即使在5dB的信噪比环境下,仍可达到94%以上的识别率,并具有较好的稳定性,这为信号识别领域中分类器的设计提供了一个很好的理论依据。
简介:针对传统智能算法在无限脉冲响应(IIR)数字滤波器设计面临的收敛速度较慢和容易陷入局部极值等问题,提出了一种基于猫群优化算法的IIR数字滤波器设计方法。猫群优化算法分为搜寻模式和跟踪模式,通过对猫群行为的观察,改进猫群的行为模式并利用该算法设计IIR数字滤波器,经过与利用粒子群算法与自由搜索算法设计的滤波器进行比较,证明用本文算法设计的数字滤波器有更好的效果。
简介:针对现有的电动机测试系统存在的负载加载可控性较差、数据采集速度慢、可模拟的负载种类少等问题,借助于工控机与可编程逻辑控制器(PLC)构成两级控制装置,引入改进的比例-积分-微分(PID)控制算法,研究开发了一套完整的电动机智能测试系统.该系统可以提高电动机测试的自动化程度,由于在测试中采用了分离元件“拼装组合”的方式,保证了整套测试系统的可靠性和可替换性.