简介:将T700或Nicalon-SiC短纤维、碳粉、硅粉和少量碳化硅粉混合,在1900℃热压烧结制备短纤维增强C-SiC复合材料,并对其组织、结构及性能进行了研究.结果表明:SiCf/C-SiC的相对密度和室温强度分别为95.3%和24.38MPa,均高于Cf/C-SiC的相对密度和室温强度,热压烧结过程中Cf的损伤严重.短纤维增强C-SiC复合材料中,由于C相和SiC相的同时存在,在同一温度下的氧化行为表现为在氧化初期氧化质量损失率较大,C相的氧化起主要作用;随氧化时间的增长,氧化质量损失率逐渐减小;在氧化后期则质量增加,SiC相的惰性氧化起主要作用.SiCf/C-SiC复合材料的抗氧化性能优于Cf-C-SiC复合材料的抗氧化性能.SiCf/C-SiC复合材料在温度为1100℃~1400℃时,温度越高,氧化质量损失率越小,抗氧化性能越强.
简介:采用浓HNO3/浓H2SO4混合酸在60℃超声环境下对T300碳纤维进行表面氧化处理,并以其为增强体制备碳纤维/环氧树脂复合材料。利用X射线光电子能谱仪、拉曼光谱仪、扫描电镜、原子力显微镜对表面氧化前后的碳纤维形态与表面化学性质进行表征,研究氧化时间对纤维的表面形貌与表面性质以及碳纤维/环氧树脂基复合材料力学性能的影响。结果表明,氧化初期,碳纤维表面生成S—、N—含氧基团,以及—OH和—C=O;后期形成—COOH,氧化时间为15min时,—COOH的浓度达到最大值。碳纤维/环氧树脂复合材料的强度随混合酸氧化时间延长而不断增强,氧化15min时强度达到峰值,相比于未氧化处理的样品,复合材料层剪切强度从16.3MPa提高到38.8MPa,抗弯强度从148.3MPa提高到379.7MPa。
简介:以AgNO3为原料,抗坏血酸为还原剂,甲基纤维素为分散剂,采用化学液相还原法制备超细银粉,研究温度、分散剂用量、pH值等对银粉分散性、粒度和形貌的影响。结果表明,反应温度对银粉形貌有很大的影响,当温度为25和30℃时,银粉为不规则的类球形;当温度为40、50和60℃时,银粉均为树枝状。分散剂用量越大,银粉的分散性越好。pH值对银粉粒度有很大的影响,随pH值增加,银粉粒度逐渐减小,当pH值从2增加至10时,所得银粉粒度分别为2.26和0.053μm。最佳工艺为:温度为25℃,pH值为2,分散剂与抗坏血酸质量比为0.02,所得银粉分散性良好,平均粒度为2.21μm。
简介:通过化学气相沉积在短碳纤维表面制备C/SiC复合涂层,然后采用凝胶注模法制备纤维体积分数分别为2%和4%的Cf/Si3N4复合材料,利用X射线衍射与扫描电镜对该材料的物相与组织结构进行分析,研究短碳纤维对Si3N4陶瓷力学性能的影响。结果表明:随碳纤维体积分数增加,Cf/Si3N4复合材料的密度和抗弯强度降低,但断裂韧性明显提高。当纤维体积分数为4%时,材料的断裂韧性达到8.91MPa·m1/2,比氮化硅陶瓷提高1.6倍,材料主要由长柱状的β-Si3N4基体、C/SiC涂层及碳纤维组成,碳纤维表面的C/SiC双涂层可防止高温下碳纤维与氮化硅基体发生反应,使碳纤维与氮化硅基体界面结合良好,以提高材料韧性并保证有合适的强度,满足功能材料在一定条件下的使用要求。
简介:通过电化学分析与测试,研究B4C体积分数分别为20%、30%、40%的B4C/Al基复合材料及其基体合金(6061铝合金)在不同浓度及不同温度的硫酸溶液中的腐蚀行为。由动态极化曲线和阻抗谱得到相应的电化学参数,并利用阻抗分析软件对该复合材料和基体合金腐蚀过程的等效电路进行模拟,分析腐蚀机理,通过Arrhenius方程计算腐蚀过程中B4C/Al基复合材料与6061铝合金的反应活化能,并分析两者的焓变与熵变,对腐蚀前后2种材料界面的微观结构进行观察。结果表明:B4C/Al基复合材料在硫酸溶液中的腐蚀速率随B4C颗粒含量增加而增大,基体铝合金在硫酸中的耐腐蚀性能高于B4C/Al基复合材料。B4C/Al基复合材料和基体铝合金在硫酸中的腐蚀速率都随硫酸溶液浓度增加而增大;当溶液温度升高时,二者的腐蚀速率都快速增加。B4C/Al基复合材料和Al基体合金在硫酸溶液中的腐蚀都表现为明显的点蚀。铝基体材料在硫酸溶液中的反应活化能大于B4C/Al基复合材料,计算所得活化焓与活化熵的值均表明复合材料的腐蚀反应比基体合金更容易进行,因而遭受腐蚀更严重。
简介:在不同工艺条件下通过高压水雾化方法制备金刚石合成用FeNi30触媒粉末。利用X射线衍射分析及Rietveld全谱拟合对触媒合金粉末中的物相进行定性与定量分析,以Rietveld全谱拟合的氧化物含量来计算总的氧含量,并与氧分析仪测试结果进行对比。结果表明,水雾化FeNi30触媒合金粉末中的氧化物主要以Fe3O4与FeO的形式存在,以Rietveld全谱拟合的氧化物含量计算出的总氧含量与定氧仪的测试结果吻合较好,相对误差在300×10-6以下,可作为1种快速测定FeNi30触媒合金粉末中有效成分与氧含量的方法。