简介:以Mo、Nb、Si、Al元素粉末为原料,采用燃烧合成法制备名义成分分别为(Mo0.97Nb0.03)(Si0.97Al0.03)2、(Mo0.94Nb0.06)(Si0.97Al0.03)2、(Mo0.91Nb0.09)(Si0.97Al0.03)2与(Mo0.88Nb0.12)(Si0.97Al0.03)2等4种不同化含量的合金,研究其燃烧合成行为,分析燃烧合成过程中粉末压坯的燃烧模式、燃烧温度、燃烧波前沿蔓延速率以及产物组成。结果表明:随Nb含量增加,燃烧合成反应模式由螺旋燃烧逐渐转变为稳态燃烧。添加Nb、Al后,合金的最高燃烧温度升高,并随Nb含量增加呈现先升高后降低的变化趋势,其中(Mo0.91Nb0.09)(Si0.97Al0.03)2的燃烧温度最高,达到1924K,但燃烧波蔓延速率随Nb含量增加而逐渐降低。XRD结果表明:(Mo0.97Nb0.03)(Si0.97Al0.03)2合金主要由MoSi2构成,含有少量Mo(SiAl)2和Mo5Si3;(Mo0.94Nb0.06)(Si0.97Al0.03)2中开始出现NbSi2相,(Mo0.91Nb0.09)(Si0.97Al0.03)2和(Mo0.88Nb0.12)(Si0.97Al0.03)2合金中Mo5Si3的衍射峰强度进一步降低,而NbSi2的衍射峰略有增强,因而添加Nb有利于形成C40结构的NbSi2,同时抑制Mo5Si3的产生。SEM观察表明合金为多孔结构。
简介:高比重合金由于具有密度和强度高、延性好等一系列优异的性能,在军工上被用作动能穿甲弹材料.纳米材料被认为是21世纪应用前景最为广阔的新型材料.采用纳米粉末可望大大细化钨合金晶粒,显著提高合金的强度、延性和硬度等力学性能,因而是制备新型高强韧、高比重钨合金的一个很重要的研究方向.作者采用机械合金化(MA)工艺制备了纳米晶钨合金复合粉末,研究了纳米晶钨合金粉末在常压氢气气氛中的烧结致密化和在烧结过程中的钨晶粒长大行为.研究结果表明,MA纳米晶粉末促进了致密化,使致密化温度降低约100~200℃.在一般固相烧结温度时可以得到晶粒尺寸为3~5μm的细晶高强度合金.同时,指出了在液相烧结时存在的问题,即钨晶粒加速重排、产生晶粒聚集与合并,迅速发生钨晶粒长大,在较短时间内液相烧结时,钨晶粒尺寸又长大到接近传统高比重合金水平.
简介:用搅拌铸造法制备原位合成硼化物增强Mg-Li基复合材料,针对复合材料中增强相分布不均的问题,在制备过程中综合采用B4C粉末沉降分级和B4C/Li-Mg预合金挤压-重熔的工艺,研究该工艺对预合金和硼化物/Mg-Li基复合材料组织和性能的影响。结果表明:对B4C粉末进行沉降分级能明显除去粉末中的微细颗粒,减少粉末间的团聚,并降低粉末氧含量。组合使用粉末沉降分级和预合金挤压-重熔工艺能显著提高预合金的密度和伸长率,改善B4C粉末在预合金中的分散性;用该预合金制备的硼化物增强Mg-Li基复合材料性能最佳,与未采用上述分散工艺制备的复合材料相比,增强相分布的均匀性明显改善,在保持良好抗拉强度的情况下伸长率和抗弯强度分别提高124.47%和7.51%。
简介:β-Ti型结构的钛基材料在生物材料领域具有广泛的应用前景。本文采用机械合金化法和放电等离子烧结制备β-Ti型Ti-Nb基合金,研究不同Nb,Fe含量对合金显微组织及力学性能的影响。利用扫描电镜(SEM)、X射线衍射仪(XRD)和透射电镜(TEM)等手段分析合金的显微组织变化情况。结果表明:机械合金化过程中,粉末的平均粒度减小,当球磨时间超过60h时粉末易发生团聚。当球磨转速为300r/min,球料比为12:1,Ti和Nb的质量分数分别为64%和24%时,球磨100h后制备的粉体材料中具有一定体积的非晶相。该粉末在1000℃下通过放电等离子烧结(SPS)制备具有均匀细小的球状晶粒组织的Ti-Nb合金,其强度、伸长率和弹性模量分别为2180MPa,6.7%和55GPa。通过控制Nb,Fe的含量,可以促进β-Ti相形成,获得高强度和低杨氏模量的Ti-Nb合金。