简介:滚动轴承的故障信号往往是微弱的周期信号,而混沌振子对特定频率的微弱周期信号十分敏感,可以有效地检测出故障信号.介绍了混沌振子的数学模型和基本检测原理,以及策动力临界阈值的确定方法.将混沌振子检测法应用于滚动轴承外圈、内圈和滚动体故障信号的检测中,通过输出相图的变化来判断故障信号是否存在,有效地实现了对滚动轴承故障信号的检测.
简介:在考虑温度对圆柱壳材料性能影响的基础上,建立了圆柱壳在扰动外压作用下的几何非线性动力控制方程.并采用伽辽金原理及Melnikov法研究了圆柱壳在热载荷及微扰外压作用下的分岔,进一步讨论分析了温度、Batdorf参数等因素对圆柱壳发生混沌运动区域的影响,得出了随温度、Batdorf参数的增大,混沌运动区域将越来越大的结论.
简介:为揭示弹箭在高空飞行过程中由于重力持续作用产生大攻角的物理本质,建立了弹道平面内时变参数的弹体运动数学模型,并推导了弹体在高空飞行段的攻角响应方程.同时,为了分析弹道顶点附近锥形运动的稳定性,综合考虑弹体姿态运动和位移运动建立了旋转弹锥形运动的动力学模型.针对大攻角引起显著气动非线性效应的情况,采用李雅普诺夫一级近似方法,给出了弹道顶点附近弹体锥形运动的稳定判据,并通过数值仿真验证了其正确性.
简介:把谱元法应用于刚架结构的动力学响应计算和分析中.建立了杆和梁的谱单元动力学刚度阵,针对刚架结构组装了整体动力学刚度阵,建立了整体结构的运动方程,计算了结构的固有频率和时域响应,并与采用有限元方法得到的结果进行了对比.从结果中可以看出谱元法在数值模拟中的独特优势.
简介:采用由闭轨分岔出极限环的思路给出了伪振子分析法的严格证明,所得结果推广了伪振子分析法的主要结论,使其能够应用于高阶Hopf分岔问题,其中分岔周期解的稳定性分析需要高于三次的非线性项.论文给出两个数值算例检验了伪振子分析法的有效性.
简介:提出一种模糊神经网络控制器并用于机器人轨迹跟踪控制.这种模糊神经网络利用B样条基函数作为隶属函数,可在线根据误差调整隶属函数的形状,使模糊神经网络具有更强的学习和适应能力.仿真与实验结果表明这种网络能很好的用于机器人的轨迹跟踪控制,具有很好的性能.
简介:使用Chebyshev-Gauss(CG)伪谱法研究带动量轮和推力器的欠驱动航天器姿态最优控制问题.基于欧拉姿态角和动量矩定理导出两类航天器姿态运动模型,采用Clenshaw-Curtis积分近似得到性能指标函数中的积分项,应用重心拉格朗日插值逼近状态变量和控制变量,将连续最优控制问题离散为具有代数约束的非线性规划(NLP)问题,通过序列二次规划(SQP)算法求解.数值仿真结果表明,对两类欠驱动航天器的姿态机动最优控制均能达到设计控制要求,得到的姿态最优曲线与验证得到的曲线几乎完全重叠.
简介:讨论了一类参数与时滞相关的时滞系统的鲁棒稳定性.在"稳定性切换几何判据法"的基础上提出了"稳定性切换点法",使用该方法可得到相应方程零解稳定的参数变化区域.针对向日葵方程这一实际例子,利用文中所提出的方法并结合Maple软件作图可以容易地得到稳定性区域和不稳定性区域以及两区域的分界线、Hopf分岔点等;进一步通过对时滞大小的调控得到方程零解的鲁棒稳定性.
混沌振子在滚动轴承故障特征提取中的应用
圆柱壳在热载荷及微扰外压作用下的分岔
一类旋转弹在高空中的锥形运动稳定性
谱元法在求解刚架结构动力学问题中的应用
伪振子分析法的证明及其在高阶Hopf分岔中的应用
模糊B样条基神经网络及其在机器人轨迹跟踪中的应用
CG伪谱法在欠驱动航天器姿态机动最优控制中的应用
稳定性切换点法在时滞系统的鲁棒稳定性中的应用