简介:设A、B、C分别为n×n,m×m,n×m复数矩阵,本文得到缺项矩阵(?CC^*B)\(?CC^*?)\(A??B)及(???B)存在投影补的充分必要条件,并且给出这些投影补的完全刻画。
简介:<正>发散性思维是一种从已知信息中产生大量变化的、独特的、新信息的思维,是一种沿不同方向、在不同范围、不因循传统的思维,是创新思维的核心,也是一种良好的学习品质.我们数学教学中的一题多解就是被推崇为培养学生发散性思维的绝好途径.一题多解即一题多
简介:HilbertC*-模上框架的框架变换的实质是将该模进行膨胀,使得该框架变换的值域存在标准正交基,以便于HilbertC*-模上不同框架之间关系的研究.受此启发,本文引入了HilbertC*-模上框架(强)可补的概念,给出并证明了HilbertC*-模上有限个框架(强)可补的充要条件.
简介:基于右上角元素值域的闭性和某空间族的维数扰动,得到了缺项四分块算子矩阵(AC?B)存在可逆补的一个新的充分必要条件,结果表明该类补问题可以转化为缺项上三角算子矩阵的可逆补加以解决.
简介:本文利用BP神经网络建立起66例肝硬化治疗结果数据预测模型,并基于matlab得出预测结果。实验证明利用BP神经网络可有效地预测肝病治疗效果。
简介:艾滋病是严重危害人类健康的传染病,抗病毒治疗是防治艾滋病的一种公共卫生策略。基于2005-2009年国家免费抗病毒治疗数据和中国艾滋病联合防治评估报告数据,利用一个离散数学模型研究了不同的抗病毒治疗覆盖率和治疗效果对于基本再生数的影响。结果表明,抗病毒治疗后由于感染者体内病毒载量的减少而导致的传染性降低的多少是影响我国艾滋病流行的关键因素。
简介:这篇论文被奉献给学习在对治疗的稳固的肿瘤的反应上为药抵抗和vasculature的效果建模的一个免费边界问题。模型由管理intra-tumoral药集中和癌症房间密度的部分微分方程的一个系统组成。由适用,抛物线的方程和Banach的L~p理论修理了点定理,这个问题有一个唯一的全球古典答案,这被证明。
缺项块矩阵的投影补
一图多割补 打开一题多解思路
Hilbert C*-模上框架(强)可补的充要条件
一类缺项四分块算子矩阵的可逆补
BP神经网络在肝硬化治疗预测中的应用
抗病毒治疗对HIV传播的基本再生数的影响
一个关于肿瘤治疗的自由边界问题的数学分析