简介:一元函数积分法在物理学中的应用──谈教材中的例题选取尤明庆(焦作矿业学院)教材中有些“实际问题”并不实际、比如引出三重积分的实际问题是求物体的质量,而这种情形实际上是难以出现的。通常求质量都是先求体积再乘以密度;而求体积只需要二重积分。某教科书中还有...
简介:2005年《企业价值评估指导意见(试行)》颁布实施以来,收益法在评估企业价值实务中得到了广泛的运用,上市公司的并购重组,国有企业的改制、股权变动等一系列的经济行为,都需要对企业价值进行评估,而上述经济行为的评估大多数都采用了收益法。随着收益法的广泛运用,收益法的评估技巧也日趋成熟和完善,但笔者却发现,折现率与预期收益口径相配比在评估实务操作中的运用仍有待商榷。
简介:给出了在一些Shiskin型网格[21,23,19,18]上,利用一个任意次的混合有限元方法在L2-模下得到奇异摄动问题解的最优一致收敛阶的一个统一方法.通过研究一个四阶问题,定常和不定常问题,我们显示了这个方法的一般性.结果显示非传统Shiskin型网格上的误差估计比传统Shiskin型网格上的误差估计更容易得到.但两种网格给出的误差估计是相容的,它们证明了Roos的猜想[21]是合理的.
简介:本文提出了一种求解单调非线性方程组的非精确正则化牛顿方法,在较弱的局部误差界条件下,证明了该方法具有局部二次收敛性,该方法是文献[4]中精确正则化牛顿法的推广.
一元函数积分法在物理学中的应用──谈教材中的例题选取
“折现率与预期收益口径相配比”在收益法评估实务中的科学性分析
求解奇异摄动问题混合有限元的最优一致收敛的统一方法
求解单调非线性方程组的非精确正则化牛顿法及其局部收敛性