简介:随着广播监测工作的积累和发展,广播监测数据与日俱增,传统的数据处理分析技术难以实现对海量广播监测数据进行高效的分析。基于此,利用Hadoop分布式文件存储系统HDFS和分布式计算框架Map-Reduce,提出了一种基于云计算的海量数据分析系统设计方案,探讨了云计算技术处理分析海量广播监测数据的应用。
简介:机载干涉SAR获取DEM的过程中,绝对相位与展开后的相位存在一个常数相位偏移量。这需要利用照射区域内角反射器的地理信息去估计这个偏置。然而,人工布设角反射器浪费人力物力。同时,在一些危险区域人工布设和测量角反射器也是难以实施的。为了克服这一限制,相位偏移量可以利用外源DEM提取的地面控制点去估计,然后通过斜坡相位模型迭代估计误差。由于机载重轨干涉SAR的时变基线误差会影响算法中斜坡相位估计模型与线性求解的匹配性能,从而影响算法估计精度。提出了一种兼顾时变基线估计和补偿的相位偏置迭代估计算法。机载C波段0.5m高分辨率重轨干涉SAR实测数据用于验证该算法的有效性,高程重建精度在4m以内。该方法简单快速,且能够消除对人工角反射器的依赖性,适合无定标点情况下机载InSAR的DEM反演。