简介:应用整体反函数理论证明了广义Lienard方程a(t)x"+f(x,x′)x′+g(t,x)=e(t),x(0)-x(2π)=x′(0)-x′(2π)=0,周期解的存在唯一性,并由此得到它在几种特殊情况下周期解的存在唯一性定理.
简介:通过应用范数形式的锥拉伸与压缩不动点定理,一类含有一维P—Laplacian算子的奇异非线性四点边值问题的正解的存在性被考查,尽管非线性项含有未知函数的一阶导数。
简介:运用二重B-值随机变量列{Xmn}在某阶矩一致有界条件下的性质和引理2.1的不等式,结合二重Dirichlet级数的成果,证明了在一定条件下,二重B-值随机Dirichlet级数+∞∑m=1+∞∑n=1Xmne-λms-μnta.s.几乎必然与二重Dirichlet级数+∞∑m=1+∞∑n=1E(||Xmn||)e-λms-μnt有相同的成对的相关收敛横坐标.
简介:利用Clark定理,研究了一维p-Laplacian方程边值问题多解的存在性,得到了这类边值问题至少有n对非平凡解的充分条件.