简介:一、填空题1.某数的12比它的3倍小4,则这个数为.2.当x=时,代数式x-1与2x-14相等.3.单项式3a2+xb4与-12a5b2(y-3)是同类项,则x=,y=.4.在公式S=12(a+b)h中,S=120,h=15且b=2a,则a=.5.填出解方程0.1-0.2x0.3=1-0.01x-0.020.06各步的依据:解 1-2x3=1-x-26( )2(1-2x)=6-(x-2)( )2-4x=6-x+2( )-4x+x=6+2-2( )-3x=6( )x=-2( )6.三个连续奇数的和为105,则三个数为.7.某人从甲地到乙地,原计划用6小时,因任务紧急,每小时比原速多行
简介:利用Mawhin的重合度理论,研究了一类具时滞的Liénard型方程的周期解的存在性,并举例说明了其应用.
简介:本文讨论了求解Sylvester方程AXB+CX=D的OROD迭代法(正交残量法和正交方向迭代法)的几个重要性质,证明了该算法产生的误差序列是单调递减的,同时给出了该算法的最小化性质的精确刻画,最后给出了一些数值例子.
简介:针对无限域上一维热传导方程的解析解为反常积分形式,直接计算往往比较困难.首先采用Fourier变换给出问题解析解,其次结合解析解的形式和无限域上Gauss型数值积分法精度高的优点,将半无限域上的一维热传导方程问题利用Gauss-Laguerre数值积分计算数值解,对无限域上的一维热传导方程的解析解转化为半无限域上的形式后用Gauss-Laguerre数值积分计算.实验结果表明,本文给出的数值解方法具有很高的精度.
简介:描述玻色-爱因斯坦凝聚(BEC)的有效而方便的方程是著名的Gross-Pitaevskii(GP)方程。本文在将GP方程变换为非线性薛定谔方程(NLS)的基础上,利用齐次平衡法求出了Gross-Pitaevskii(GP)方程的一系列Jacobi椭圆函数解。
简介:我们考虑二阶方程Dirichlet边值问题混合元的超收敛.在正则矩形网格上,采用一阶Raviart-Thomas混合元空间,对有限元解经后处理后,其收敛于精确解的速度从二阶提高到四阶.