简介:煤层气的商业性开采在阿巴拉契亚(Appalachian)盆地北部开始于上世纪30年代,而在圣胡安(SanJuan)盆地开始于50年代初。然而,直到70年代和80年代初经美国矿务局、美国能源部、天然气研究所和油气作业者共同努力,证明可用垂直井对煤层气进行商业性开采时才认识到煤层气资源的重要性和经济意义。勘探和开发工作在80年代末和90年代初得以扩展,部分是由于非常规燃料的税收减免法。到2000年,煤层气已占美国干气储量(15.7万亿立方英尺[4400亿m^3])的8.8%和年产量(1.38万亿立方英尺[400亿m^3)的9.2%。从1989到2000年,美国煤层气的累积产量为9.63万亿立方英尺(2720亿m^3)。目前,煤层气的开发已扩展到美国12个盆地左右,而勘探工作则发展到全世界。煤层是自生自储的气藏,它们可含有热成因气、运移来的热成因气、生物成因气或混合气。煤层气主要呈吸附状态储集在煤基质的微孔隙中,其次呈游离气储集在微孔隙和裂缝中,或者呈水中的溶解气。控制气资源量和生产能力的主要参数是热成熟度、显微组分组成、气含量、煤层厚度、裂缝密度、地层应力、渗透率、埋藏史和水文环境。这些参数在美国和世界的生产气田中有很大差异。在2000年,圣胡安盆地占美国煤层气产量的80%以上。这个盆地有个巨大的煤层气成藏层发育区,即弗鲁特兰富集区带(FruitIandfairway),它已采出7万亿立方英尺(2000亿m^3)以上的气。弗鲁特兰煤层含气系统及其基本要素和保德河(PowderRiver)盆地的尤宁堡(FortUnion)煤层气成藏层形成显明对比。尤宁堡煤层气成藏层是美国开发最快的天然气成藏层之一,其产量由1997年的140亿立方英尺(4亿m^3)迅速增加到2000年的1473亿立方英尺(41亿m^3),占当时美国煤层气产量的10.7%。到2001年,年产量为2447亿立方英尺(69亿m^3)。
简介:随着油井设计和开采技术的进步,致密油藏(绝对渗透率低于1mD的低渗透油藏)的开发已经引起了人们的极大关注。结合使用长水平井钻井技术与多段水力压裂技术(多段压裂水平井),可以极大地提高这类油藏一次采油的产量。然而,这类油藏的有效渗透率很低,油井很难维持较高产量,因而在开发达到一定阶段后,不可避免地需要采用适合的EOR技术。文中研究了致密油藏CO2混相驱和水气交替注入开发技术。有关这两项提高采收率采油技术在常规油藏中的应用,已经有比较多的研究,但对于致密油藏来说有效的EOR方案设计要复杂的多。这些复杂性主要表现在裂缝参数(例如裂缝半长、导流能力、裂缝方向[纵向vs.横向])的合理选取、生产井和注入井的裂缝分布以及每口井及其每个井段的作业条件等。在本次研究中,我们采用的EOR方案是对生产井和注入井都开展多段水力压裂作业,而且各水力压裂段错开,以便延缓注入流体的突破时间,进而提高驱扫效率。对于一组确定的参数,都要开展组分模拟,研究CO2段塞的大小、水气比和周期长度等对开采效率的影响。然后把上面所讲的EOR技术能够实现的采收率与相应的基准情形(一次采油和注水开发)采收率进行对比。本次研究结果表明,致密油藏水气交替驱采油可以把石油采收率提高约20%。
简介:由于油气勘探开发问题已变得十分复杂,已无法只依靠一个学科来解决,同时我们又处在信息爆炸的时代,所以油气行业的多学科分析方法和数据发掘工作也就显得越来越必要,已远远超出了职业好奇心。为了解决我们所面临的困难问题,需要为传统学科(例如石油工程学、地质学、地球物理学和地球化学)拆除我们所构建的隔墙,同时寻找真正的多学科解决办法。因此,我们今天基于结果的“综合”将不得不让位于一种新的综合形式,这就是学科综合。此外,为了解决复杂问题,还需要超越标准的数学技术。为此,需要用一些新兴的成套方法和软计算技术(例如专家系统、人工智能、神经网络、模糊逻辑、遗传算法、概率推理和并行处理技术)来补充常规的分析方法。软计算与常规(硬)计算的区别,表现在软计算可以接受模糊性、不确定性和局部真实。软计算还具有易于使用、功能强大、可靠有效和成本低廉的特点。在这篇综述性论文中,我们要特别强调软计算对油气藏智能描述和勘探的作用。