简介:本文研究了一类二维非线性Schrodinger方程解的有限维行为,我们得到了此方程存在吸引子,并得到了此吸引子维数的上界估计
简介:本文研究了保费收入过程是泊松过程和聚合理赔过程中理赔间隔时间和个别理赔额之间具有Boudreauheta1.(2006)中所描述的相依结构的一类更新风险模型.运用生成函数、离散形式的Dickson—Hipp算子和反Z变换等一系列方法,推导出了该模型的Gerber—Shiu函数的生成函数的精确表达式,以及它所满足的瑕疵更新方程.
简介:首先建立了第二类Chebyshev多项式Un(x)的Landau's型不等式.利用Un(x)的正交性,建立了代数多项式pn(x)的加权Landau's型不等式,并且指出其不等式的系数在某种意义上是最好可能的.
简介:设X是实Banach空间,H:X→X是Lipschitz算子,T:X→X是一致连续的且值域有界,H+T是强增生的,则Mann和Ishikawa迭代程序几乎稳定地强收敛到方程Hx+Tx=f的唯一解.
简介:利用临界点理论研究带阻尼项的二阶Hamilton系统周期解的存在性.在具有部分周期位势和线性增长非线性项时,根据广义鞍点定理定理,得到了系统多重周期解存在的充分条件.